ALL-RUSSIA OPEN ANNUAL CONFERENCES ON
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE
Principal physics, methods and techniques for monitoring the environment, potentially dangerous phenomena and objects
рус
Proceedings of the 16th Conference (November 12-16, 2018, Moscow, Russia)
Application of SAFY Crop Growth Model for Maize Yield Forecast
Igor I. Sereda, Olga V. Tutubalina
Lomonosov Moscow State University, Moscow, Russia
iisereda@mail.ru
DOI 10.21046/rorse2018.48
Usually, yield prediction requires a significant number of parameters, which are currently impossible to obtain using just remote sensing data. Using the SAFY model, we developed a method of above-ground phytomass estimation and yield forecast on the basis of meteorological information, Sentinel 2 MSI imagery and literature data. We tested the method for an experimental maize field in the Lipetsk region of Russia. As a result of our study, we estimated the total above-ground phytomass and yield one and a half months before harvest for the field. The maximum error in determining the yield using the SAFY crop development model, can be tentatively estimated at ± 10 %.
Keywords: precision agriculture, maize, yield, above-ground phytomass, crop growth model, SAFY
References: - [1] Jin X., Kumar L., Li Zhenhai, Feng H., Xu Xingang, Yang G., Wang J., A rewiew of data assimilation of remote sensing and crop models, European Journal of Agronomy, 2018, 92, pp. 141-152. DOI: https://doi.org/10.1016/j.eja.2017.11.002
- [2] Poluektov R.A., Terleev V.V., Imitacionno-modeliruyushchij kompleks AGROTOOL, v.3 (Dinamicheskaya model' produkcionnogo processa sel'skohozyajstvennyh rastenij): Algoritmicheskaya struktura modeli. – Rossijskaya akademiya sel'skohozyajstvennyh nauk. Agrofizicheskij nauchno-issledovatel'skij institut. Laboratoriya modelirovaniya agroekosistem, St.P., 2007, pp. 95-112. (In Russian)
- [3] Diepen C.A. van, Rappold C., Wolf J, CWFS Crop Growth Simulation Model WOFOST Documentation: Version 4.1. Centre for World Food Studies, Wageningen, The Netherlands, 1988, pp. 1-299.
- [4] Steduto P., Hsiao T.C., Raes D., Fereres E., AquaCrop-the FAO crop model to simulate yield response to water. I. Concepts and underlying principles. Agron, 2009, pp. 426–437. DOI: 10.2134/agronj2008.0139s
- [5] Monteith J. L., Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1977, 281, pp. 277–294.
- [6] Duchemin B., Maisongrande P., Boulet G., Benhadj I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index, Environmental Modeling & Software, 2008, 23, pp. 876-892. DOI: 0.1016/j.envsoft.2007.10.003.
- [7] Claverie M., Demarez V., Duchemin B., Hagolle O., Ducrot D., Marais-Sicre C., Dejoux J.-F., Hux M., Keravec P., Beziat P., Fieuzal R., Ceshia E., Dedieu G. Maize and sunflower biomass estimation in southwest France using spatial and temporal resolution remote sensing data, Remote Sensing of Environment, 2012, 24, pp. 844-857. DOI: 10.1016/j.rse.2012.04.005.
- [8] Atwell B.J., Kriedemann P.E., Turnbull C.G.N., Plants in action: Adaptation in Nature, Performance in Cultivation, Macmillan Education Australia Pty Ltd, Melbourne. Australia. 1999. DOI: https://doi.org/10.1006/anbo
- [9] Myneni R.B., Los S.O., Asrar G., Potential gross primary productivity of terrestrial vegetation from 1982–1990, Geophysical Research Letters, 1995, 22, pp. 2617–2620. DOI: https://doi.org/10.1029/95GL02562
- [10] Ruimy A., Saugier B., Dedieu G. Methodology for the estimation of terrestrial primary production from remotely sensed data. Journal of Geophysical Research, 1994, 99, pp. 5263–5283. DOI: 10.1029/93JD03221
- [11] Gitelson A.A., Gamon J.A., The need for a common basis for defining light-use efficiency: Implications for productivity estimation, Remote Sensing of Environment, 2015, 156, pp.196-201. DOI: 10.1016/j.rse.2014.09.017
- [12] Weiss M. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Sentinel2 ToolBox Level2 Products, Date Issued 02.05.2016. Issue:V1.1, 53 p.
- [13] Andreev A.D., Chernyh L.M. Fizika. Obrabotka rezul'tatov izmerenij v fizicheskom praktikume: Konspekt lekcii, St.P GUT, 2009. 8 p. (In Russian).
Download pdf
Section 1. Methods of modeling various phenomena focused on assimilation of remote sensing data
48-54