
ЗАО «АЗЕРБАЙДЖАН ХАВА ЙОЛЛАРЫ» НАЦИОНАЛЬНАЯ АКАДЕМИЯ АВИАЦИИ (НАА)

СОЗДАНИЕ ИНФОРМАЦИОННО-АНАЛИТИЧЕСКОЙ СИСТЕМЫ ПО НЕФТЕПРОМЫСЛАМ АПШЕРОНА НА БАЗЕ СПУТНИКОВОЙ ИНФОРМАЦИИ ВЫСОКОГО РАЗРЕШЕНИЯ

Докладчик: к.ф.-м.н., доцент Исматова Хосият Раджабовна XV Всероссийская Открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса» 13–17 ноября 2017 года Москва, ИКИ РАН

Соавторы: Талыбова С.С, Джабаров Х.И.

немного истории

3 мая 2010 года было создано ОАО «Azercosmos»

8 февраля 2013 год был запущен телекоммуникационный спутник Azerspace.

с 2014 года OAO «Azercosmos» владеет ресурсами спутника SPOT7 (Azersky)

Пространственное разрешение: MS:6м, PAN:1,5м.

Спектральное разрешение: 4 канала, видимый и инфракрасный диапазоны

С запуском спутника Azersky естественно возникает вопрос о его возможностях:

как и где использовать получаемую со спутника информацию

НО С ПРИОБРЕТЕНИЕМ СПУТНИКА МЫ РЕАЛИЗУЕМ САМОЕ ГЛАВНОЕ

ЕГО ПРЕИМУЩЕСТВО – ЭТО ВОЗМОЖНОСТЬ ПРОВЕДЕНИЯ

КОСМИЧЕСКОГО МОНИТОРИНГА

непрерывного многократного получения информации о качественных и количественных характеристиках природных и антропогенных объектов и процессов

ОСНОВНЫЕ ПРЕПЯТСТВИИ НА ПУТИ РАЗВИТИЯ И ПРИМЕНЕНИЯ КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

- ✓ специфика работы с космическими снимками: сложность и многоэтапность её обработки, необходимость совместной работы с экспертом- предметником
- отсутствие средств быстрой взаимосвязи с потребителем и их ответной реакции на результаты обработки
- > отсутствие специалистов в организациях
- **> закрытые информационные ресурсы в организациях и министерствах**

- > отсутствие скоординированной базовой географической информации в электроном виде.
- **>** высокая стоимость программных продуктов и космических снимков
- необходимость в ряде случаев проведение полевых исследований

В результате перечисленных проблем теряется основная ценность аэрокосмической информации – это её оперативность и приводит к дублирование работ, потери времени на обработку и дешифрирование, поиску специалистов и программных продуктов по обработке снимков

СОВРЕМЕННЫЙ ЭТАП РАЗВИТИЯ КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

На современном этапе развития информационных технологий указанные проблемы решаются на базе ВЕБ/ГИС технологий, создания геосервисов по определённой тематике и геопорталов.

НЕОБХОДИМА ИНТЕГРАЦИЯ СПЕЦИАЛИСТОВ ПО ОБРАБОТКЕ СНИМКОВ И СПЕЦИАЛИСТОВ—ПРЕДМЕТНИКОВ, ПРОГРАММНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ, ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕТОДИЧЕСКИХ РАЗРАБОТОК ПО ОБРАБОТКЕ ДАННЫХ ДЗЗ и ИНФОРМАЦИОННЫХ РЕСУРСОВ

В основе каждого ГИС-сервиса лежит геоинформационный ресурс: карта, база данных, инструмент геообработки и др. Достаточно послать стандартный запрос к ГИС-сервису по сети Интернет/Интранет, чтобы получить нужный результат. Например, отправить координаты участка на местности и получить в ответ соответствующее изображение.

Так как имеется большая потребность в специалистах по данному профилю в нефтегазовой отрасли, то в Проблемной лаборатории «Аэрокосмический мониторинг» кафедры «Аэрокосмический мониторинг окружающей среды» НАА создаётся образовательный геосервис «Нефтепромыслы Апшерона» для доступа к данным и обучения студентов и магистров.

ЭТАПЫ СОЗДАНИЯ ИНФОРМАЦИОННОЙ СИСТЕМЫ ОБРАЗОВАТЕЛЬНОГО ГЕОСЕРВИСА

Нефтегазовая отрасль является ключевой в экономике современного Азербайджана.


Отсюда в связи с возрастающими требованиями к обеспечению промышленной и экологической безопасности на объектах нефтегазового комплекса, наиболее эффективным способом для информационного обеспечения в области мониторинга краткосрочных и долгосрочных изменений на территории лицензионных участков, является мониторинг с использованием данных дистанционного зондирования Земли, новых методов обработки аэрокосмической информации и геоинформационных технологий.

Очевидно, что в этой области необходимы специалисты и в Национальной Академии Авиации (НАА) Азербайджана студенты и магистры обучаются по специальности инженер –эколог по специализации инженер- аэрокосмический мониторинг С целью более эффективного обучения по этой специальности создаётся

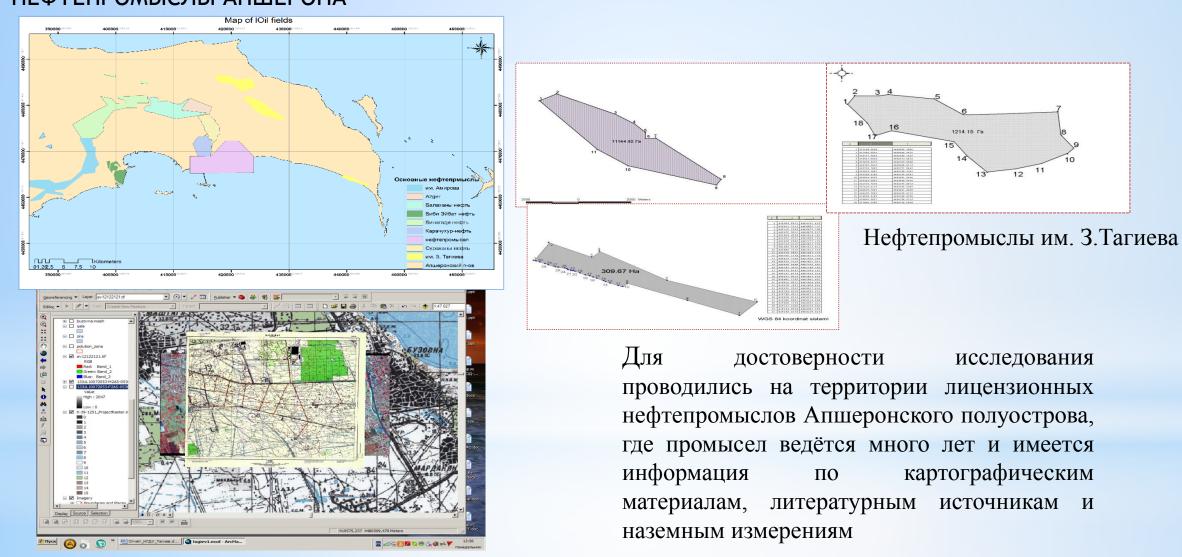
* ОБРАЗОВАТЕЛЬНЫЙ ГЕОСЕРВИС ПО ПРОБЛЕМАМ АЭРОКОСМИЧЕСКОГО МОНИТОРИНГА

* ПРОБЛЕМНАЯ ЛАБОРАТОРИЯ «АЭРОКОСМИЧЕСКИЙ МОНИТОРИНГ»

* СЕКТОР «ОБРАБОТКА АЭРОКОСМИЧЕСКОЙ ИНФОРМАЦИИ»

ЦЕЛЬ: Организовать доступ студентам, магистрам, диссертантам и научным сотрудникам доступ к снимкам, картматериалам, методологии обработки и тематическим продуктам проблемной лаборатории.

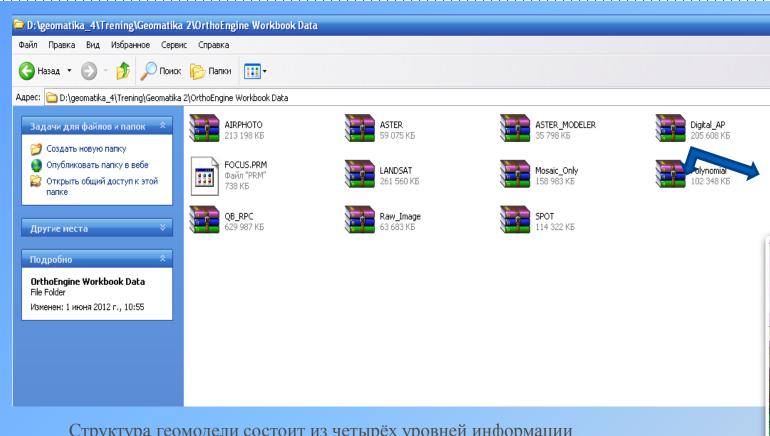
Одной из проблем является применение ДЗЗ и ГИС в нефтегазовой отрасли


СХЕМА НАКОПЛЕНИЯ, ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ ДАННЫХ МОНИТОРИНГА ПО СПУТНИКОВОЙ ИНФОРМАИИ В ОБРАЗОВАТЕЛЬНОМ ГЕОСЕРВИСЕ ПРОБЛЕМНОЙ ЛАБОРАТОРИИ «АЭРОКОСМИЧЕСКИЙ МОНИТОРИНГ»

Разработана методика создания информационной системы аэрокосмического мониторинга, где собраны экспертные знания, геопространственная информация различного уровня и содержания, чтобы быть информационным материалом для дешифрирования снимков и интерпретации полученных результатов

ИССЛЕДУЕМАЯ ТЕРРИТОРИЯ - ЛИЦЕНЗИОННЫЕ НЕФТЕПРОМЫСЛЫ - КАК ОСНОВА ДЛЯ ЭФФЕКТИВНЫХ ИССЛЕДОВАНИЙ и СОЗДАНИЯ БАЗЫ ДЕШИФРОВОЧНЫХ ПРИЗНАКОВ

НЕФТЕПРОМЫСЛЫ АПШЕРОНА

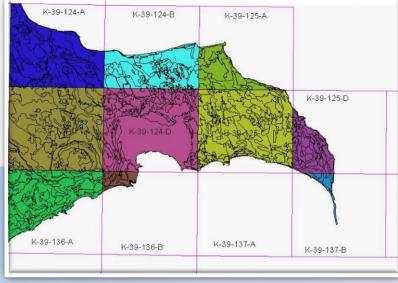

Скоординированная информация

При подготовке информационных ресурсов для геосервиса также были исследованы возможности спутника AZERSKY для решения задачи идентификации объектов инфраструктуры нефтепромыслов (в частности мелких размеров)

Постановка задачи:

- 1. Идентификация объектов инфраструктуры нефтегазовых промыслов на суше:
 - 1.1. объектов малых размеров (таких как качалка или вышка)
 - 1.2. линейных объектов (различные трубопроводы, дороги и каналы)
 - 1.3. других объектов (цистерны, подстанции и т.д.)
 - 2. Идентификация объектов инфраструктуры нефтегазовых промыслов на море:
 - 2.1. платформы на эстакадах и в море
 - 2.2. нефтяные эстакады, электролинии
 - 2.3. причалы, корабли
 - 3. Картографирование динамики территориального распределения объектов инфраструктуры
 - 4. Выявление территорий, загрязненных нефтепродуктами, мониторинг аварийных разливов нефти, контроль темпов и оценка эффективности рекультивационных мероприятий на суше
 - 5. Обнаружение и картографирование нефтезагрязнений на море
 - 6. Возможности использования данных со спутника при поиске и разведке нефтегазовых месторождений
 - 7. Исследование озёрных экосистем Апшеронского полуострова по результатам деятельности нефтепромыслов
 - 8. Разработка методики по применению спектрального анализа космических снимков и создание Базы Данных спектральных характеристик объектов нефтепромыслов
 - 9. Создание ИАС на основе современных ВЕБ/ГИС технологий

ФАЙЛОВАЯ БАЗА ХРАНЕНИЯ ДАННЫХ КОСМИЧЕСКИХ СНИМКОВ, КАРТМАТЕРИАЛОВ, ВЕКТОРНЫХ ДАННЫХ



Структура геомодели состоит из четырёх уровней информации

- 1. **Map**
- 2. Image
- 3. Vector
- 4. Database

Модель представляет базовую файловую структуру и служит основой для построения информационных систем

Программное обеспечение сектора «Обработка аэрокосмической информации»: лицензионные программы: PCI Geomatica, ENVI 5.2, и программы в свободном пользовании QGIS, RockWorks15

Классификация тематических слоёв

Исходная информация. База Геоданных ИАС «Нефтепромыслы Апшерона» состоит из трёх типов информации:

- 1. Спутниковые снимки
- 2. Картматериалы;
- 3. Наземные измерения.

Вся собранная, обработанная и систематизированная информация делится на растровые, векторные и табличные данные. Спутниковая информация классифицируется по пространственному и спектральному разрешению, по дате

Архивные точечные объекты инфраструктуры:

нефтяные качалки и буровые скважины. Буровые скважины делятся на буровые заглушенные, буровые действующие по дате карты, нефтяные колодцы, нефтяные платформы на море, нефтяные платформы на эстакаде, надводные и подводные камни, маяки, географические высоты

Точечные темы по снимкам классифицируются на: качалки, качалки с вышками, нефтяные вышки, нефтяные платформы на эстакаде.

КЛАССИФИКАЦИЯ ТЕМАТИЧЕСКИХ СЛОЁВ

Линейные архивные данные классифицируются на: дороги (шоссе, дороги на нефтепромыслах, асфальтированные и просёлочные, железнодорожные), каналы, реки.

Трубопроводы: нефтяные, газовые. нефте-газовые объединённые, водопроводные как надземные, так и подземные. Другие линейные объекты: линии электропередач, эстакады, изолинии.

Линейные объекты по снимкам классифицируются на совпадающие по карте и новые линии трубопроводов, каналов, дорог.

Архивные полигональные объекты: промышленные, электрические подстанции, хранилище нефтигаза, здания, отстойники и водные объекты инфраструктуры нефтепромыслов.

Полигональные объекты со снимков также классифицируются на совпадающие по картам и новые объекты инфраструктуры.

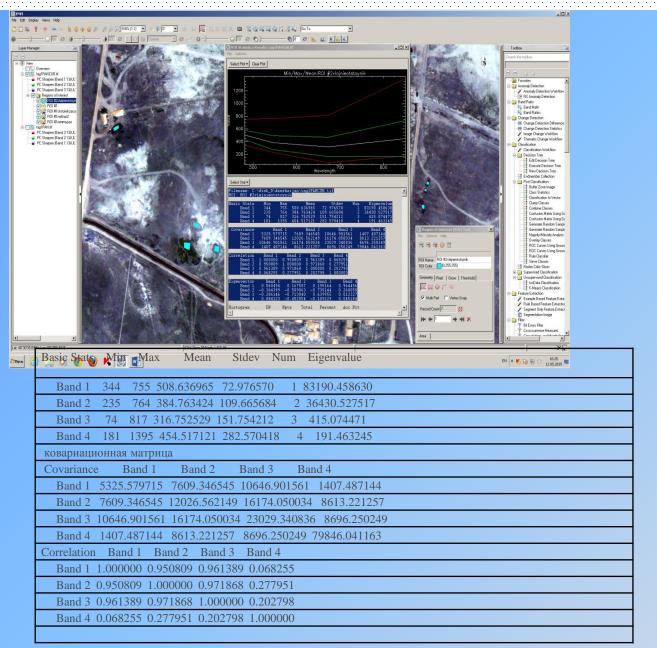
ВЕКТОРИЗЦИЯ ЭЛЕМЕНТОВ ТООКАРТЫ ПО НЕФТЕПРОМЫСЛАМ И КОМПАНОВКА ВЫХОДНОЙ ИНФОРМАЦИИ

Пример систематизированной, обработанной и представленной в виде карты априорной информации об нефтепромысле

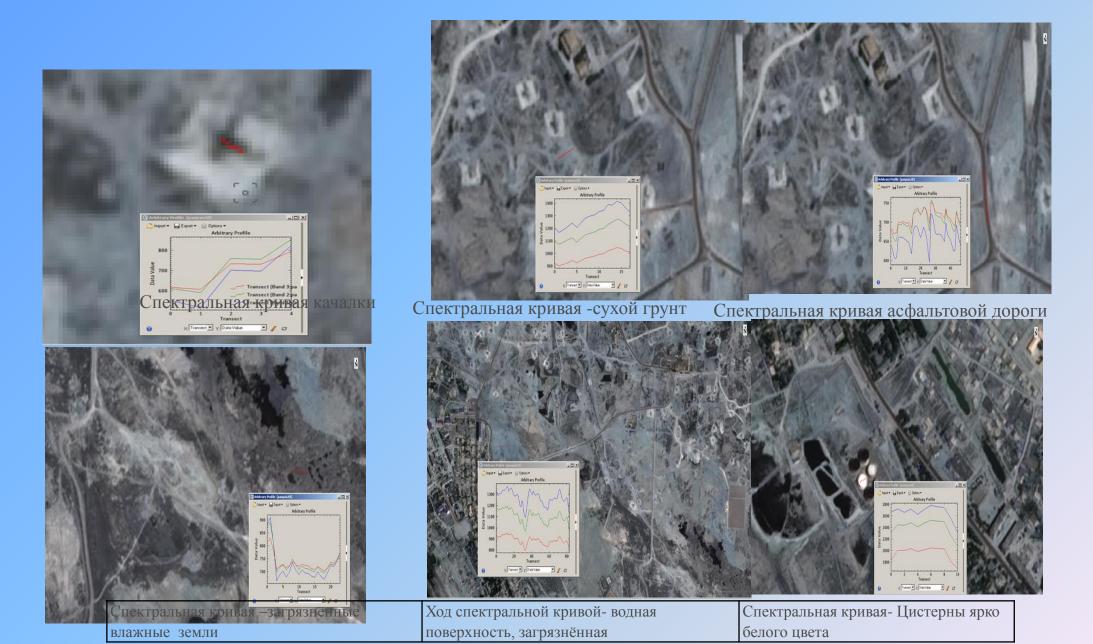
СОБИРАЛАСЬ ОБЩАЯ ИНФОРМАЦИЯ ПО НЕФТЕПРОМЫСЛАМ

ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ ПОЧВ И ПОВЕРХНОСТНЫХ ВОД СУШИ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ

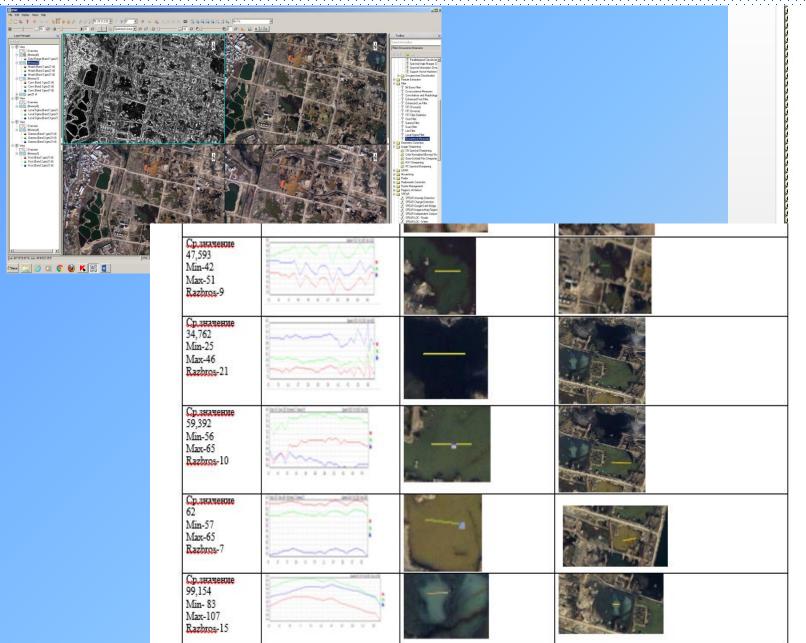
- нефтепромыслы на суше и континентальном шельфе;
- нефтераспределительные пункты и базы, автомобильный транспорт;
- предприятия нефтеперерабатывающей промышленности;
- загрязнения углеводородами резервуары для хранения нефти и нефтепродуктов;
- загрязнения сероводородом системы оборотного водоснабжения.

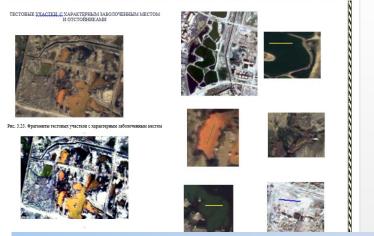


ДЛЯ НУЧНЫХ ИССЛЕДОВАНИЙ БОЛЕЕ ПОДРОБНУЮ ИНФОРМАЦИЮ ПРЕДОСТАВЛЯЕТ СПЕКТРАЛЬНЫЙ АНАЛИЗ

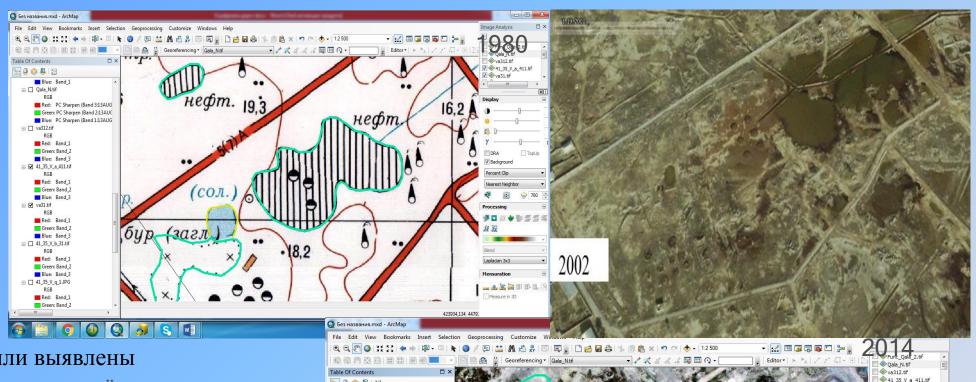


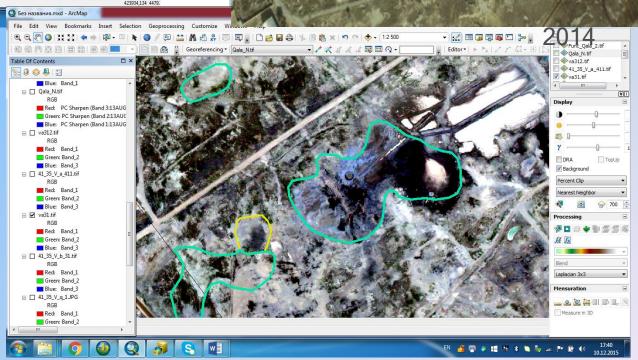
Спектральный анализ объектов инфраструктуры нефтепромыслов проводится с помощью ПО ENVI 5.2 который показал, что каждый объект имеет свою спектральную кривую и спектральные и характеристики


Собственные значения ковариационной матрицы									
Eigenvecto	r Band 1	Band 2	Band 3	Band 4					
Band 1	0.060494	0.167557	0.195164	0.964456					
Band 2	-0.364399	-0.509063	-0.735144	0.260058					
Band 3	-0.286146	-0.713040	0.639955	0.012327					
Band 4	0.884123	-0.452054	-0.109229	0.045184					

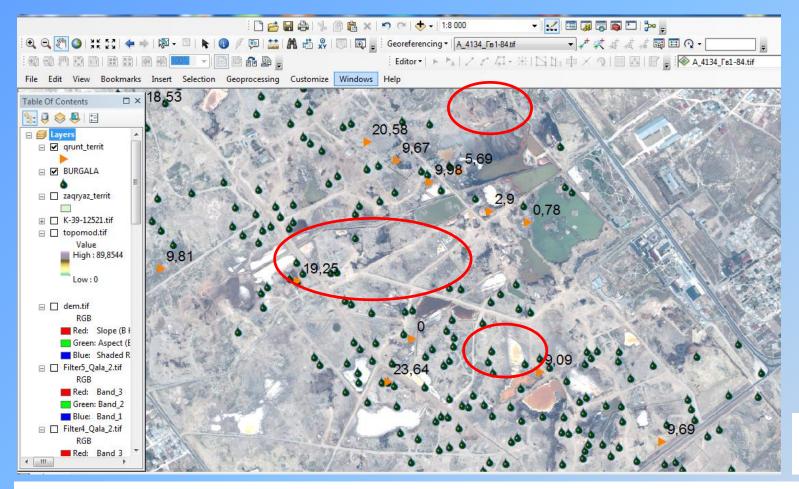

СПЕКТРАЛЬНЫЙ АНАЛИЗ ОБЪЕКТОВ ИНФРАСТРУКТУРЫ НЕФТЕПРОМЫСЛОВ.

ПО РЕЗУЛЬТАТАМ СОСТАВЛЕН БАНК СПЕКТРАЛЬНЫХ ОБРАЗОВ ОБЪЕКТОВ ДЛЯ ДАЛЬНЕЙШИХ НАУЧНЫХ ИССЛЕДОВАНИЙ


Кадастр загрязнённых территорий - один из аспектов применения спутниковой информации, основы которой заложены в базе спектральных характеристик


Вследствие освоения загрязнённых Территорий под жилые застройки и зоны отдыха необходимо создавать Кадастры загрязнённых земель, с учётом космических фотообразов этих территорий и их спектральных образов

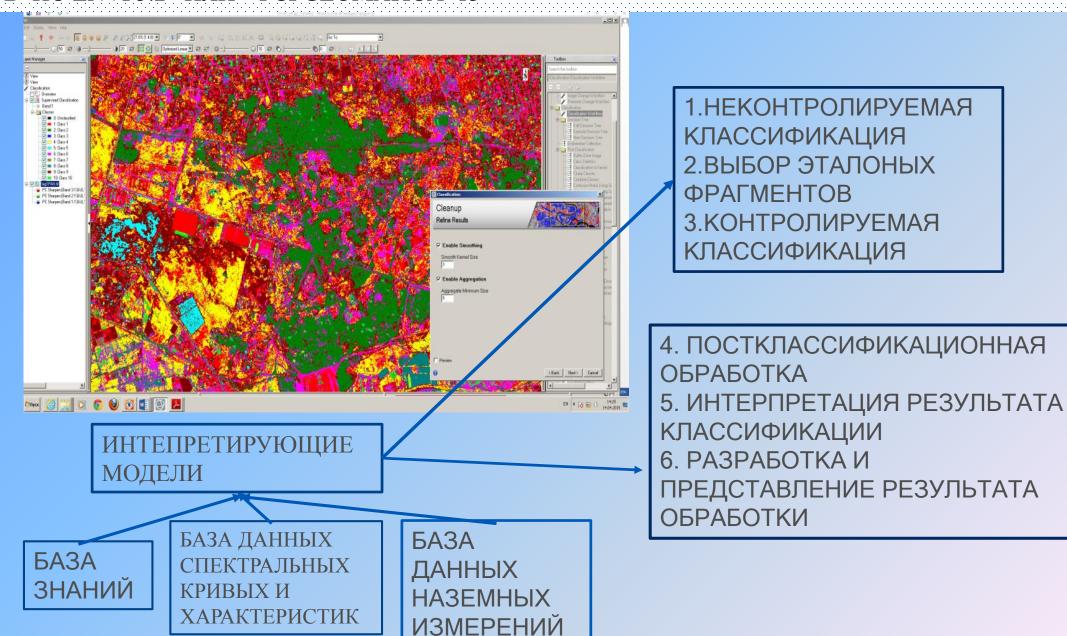
СОЗДАНИЕ ЭТАЛОНОВ ЗАГРЯЗНЁННЫХ НЕФТЬЮ И ОТХОДАМИ НЕФТЕДОБЫЧИ ПОЧВ



Первым были выявлены Многолетние загрязнённые почвы и занесены в банк данных

Из вещества и материалов, используемых в бурении, <u>наибольшую</u> опасность для почво-грунтов представляют минеральные соли, нефть и нефтепродукты

Интеграция с наземными данными - увеличивает достоверность исследований


Карта засоления почв Апшеронского полуострова, составленная Исматовой X.P.

Сопоставление наземных данных и снимка (по содержанию нефти в процентах в грунте (оранжевые треугольники указывают координаты точек изъятия проб грунта, а цифры содержание нефти в процентах)

При содержании в составе отработанных буровых растворов более 15% нефти и нефтепродуктов даже в плодородных черноземах урожайность с/х культур падает практически до нуля, и почва не восстанавливается в течение 3-6- лет

*ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ДАННЫХ С ГЕОСЕРВИСА

МНОГОМЕРНЫЙ АНАЛИЗ МУЛЬТИСПЕКТРАЛЬНЫХ СНИМКОВ СРЕДСТВАМИ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ В ПО ENVI 5.2 ИЛИ PCI GEOMATICA -13

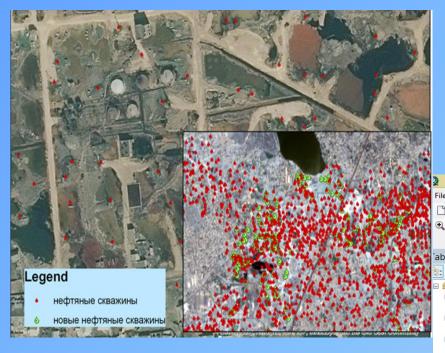
СНИМКИ СРЕДНЕГО РАЗРЕШЕНИЯ В ОПТИЧЕСКОМ ДИАПАЗОНЕ

Нефтяной разлив

Частичное зарастание

Рекультивированные земли

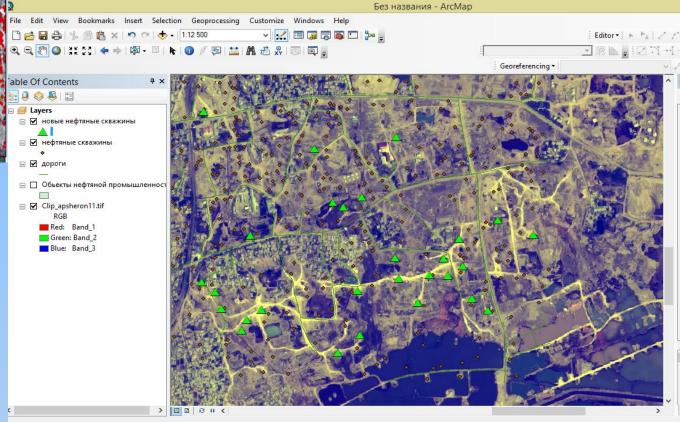
Характерные дешифровочные признаки засоленных вод и нефти:



В чистом виде ни тот, ни другой загрязнитель в окружающую среду не попадают. Нефть всегда содержит значительное (от единиц до десятков %) минерализованных вод, и практически всегда, говоря о разливе сырой нефти (а именно они обычно и происходят), следует иметь ввиду что из трубы поступает смесь углеводородов + минерализованные воды + другие загрязнители

Итог: Снимки среднего разрешения (30м) позволяют отделить нефтяное загрязнение от других загрязнителей (засоленные воды)

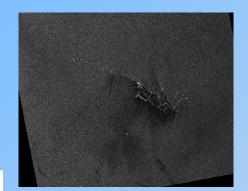
Динамика развития нефтяной промышленности.


В данном примере мы сопоставили данные с карты, которую привязали со снимком AZERSKY.

На пилотной территории мы выделили 900 скважин по карте 1980 года и 60 новых скважин по снимку AZERSKY 2014года

Работа выполнена студентом

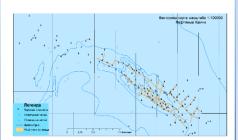
4- курса Джафаровым Хафизом

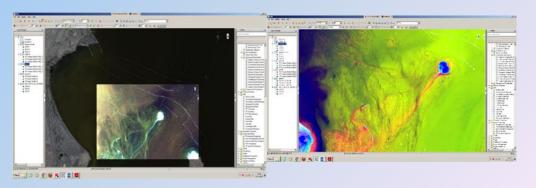


СОЗДАНИЕ БАЗЫ ДАННЫХ ДЛЯ ИДЕНТИФИКАЦИИ НЕФТЯНЫХ ПЯТЕН

- Геопространственные интерпретирующие модели нефтепромыслов на море:
- 1. Космические снимки
- 2. Векторные электронные карты
- 3. Фотообразы нефтяных платформ

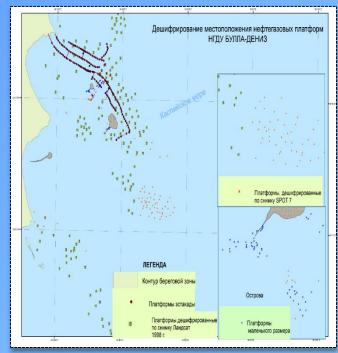
Для распознавания нефтяных пятен используются в основном радиолокационные снимки, а снимки оптического диапазона используются как дополнительный материал.


Интерпретирующие модели составляют различные типы нефтяных пятен и других загрязняющих веществ в море, а также оцифрованные векторные модели Например, фотография из Базы Данных помогла идентифицировать шлейф дыма

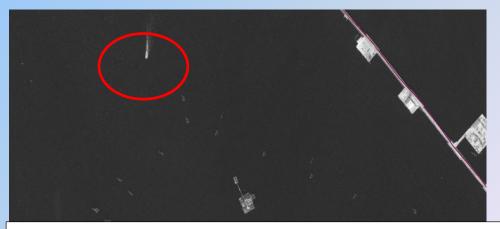


РАДИОЛОКАЦИОН -НЫЕ СНИМКИ ИЗ БД

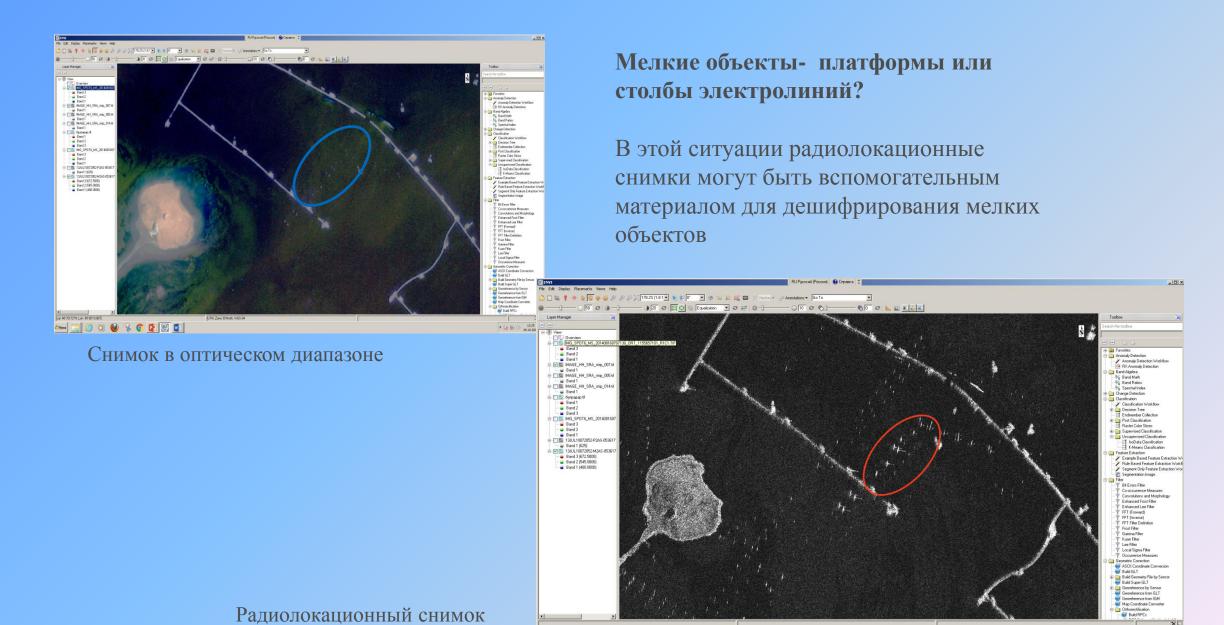
ПРИМЕРЫ НЕФТЯНЫХ ПЯТЕН ИЗ БД ВЕКТОРНЫЕ СЛОИ ИЗ БД


Специализированные преобразования отделяют цветущие водоросли от нефтяных загрязнений

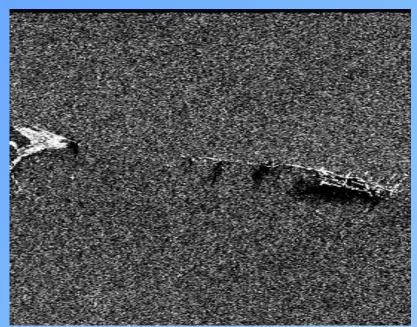
КОСМООБРАЗЫ НЕФТЯНЫХ ПЛАТФОРМ ИЗ БД


Исследование возможностей информации со спутника AZERSKY для идентификации нефтяных платформ на море

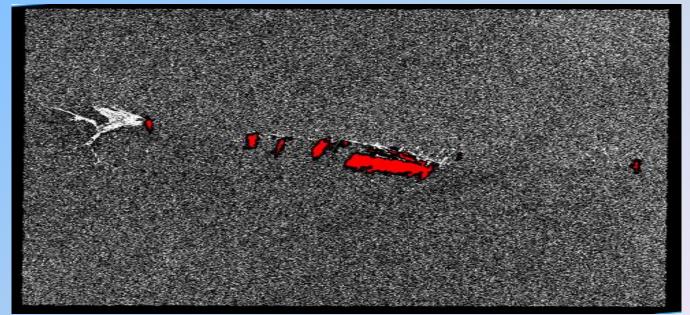
В результате дешифрирования космического снимка Ландсат 1998 года с пространственным разрешением 30м, что соответствует картам масштаба 1:100000, были зафиксированы 173 платформы на эстакаде и 151 в море. Это результат по возможности дешифрирования по указанным параметрам снимка Ландсат 1998 года В результате добавочного дешифрирования по снимку высокого разрешения AZERSKY(1,5 м, 2014 года) получено совпадение по платформам 1998 года, а также удалось дешифрировать платформы более мелкого размера. Всего в сумме дешифрировано 550 платформ по результатам обработки космического снимка AZERSKY.



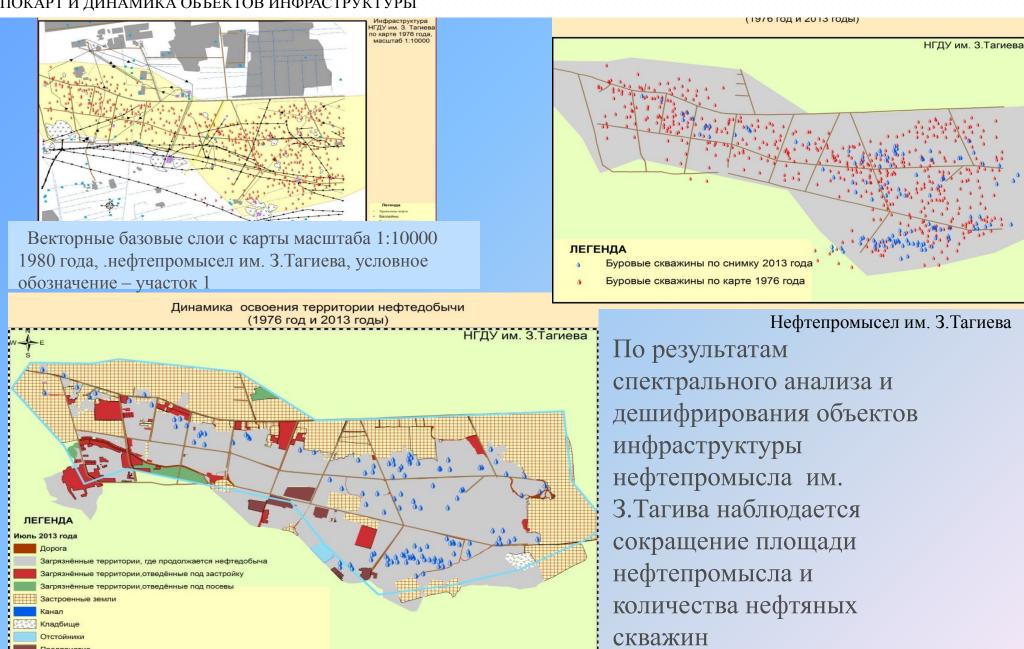
Строящаяся эстакада


Дешифрирование мелких объектов в море , а также корабля, зафиксированного на снимке во время съёмки

СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ СНИМКОВ В ОПТИЧЕСКОМ ДИАПАЗОНЕ И РАДИОЛОКАЦИОННЫХ

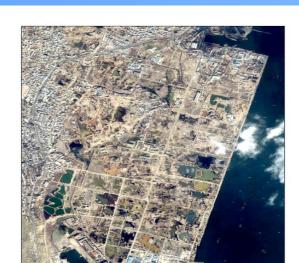

Ønyck 🚞 🥝 🖸 🥹 条 👩 📭 🚱 🚛

ИНТЕРПРЕТИРУЮЩИЕ МОДЕЛИ ДЛЯ РАДИОЛОКАЦИОННЫХ СНИМКОВ


4	🐔 Таблица атрибутов — 2012_RS_fine :: Всего объектов: 10, скрыто фильтром: 10, выделено: 0													χ
														Справка
	sıra nömrəsi	çirklənmə tarixi	çirklənmə vaxtı	sahə (ha)	perimetr (km)	çirklənmə mənb	çirklənmə növü	səbəbkar	küləyin istiqaməti	küləyin sürəti(m/	dalğa hünd. (m)	peykin tipi	peykin adı	
0	1	03.07.2012	07:39:27	100.10000	22.7650	sahildən	antropogen	Jiloy adası	Şm	3	1.20	radiolokasiya	Radarsat-2	
1	1	03.07.2012	07:39:27	59,27300	27.5640	platformadan	antropogen	Neft daşları	Şm	3	1.50	radiolokasiya	Radarsat-2	
2	6	03.07.2012	07:39:27	321.60000	52.3630	platformadan	antropogen	Neft daşları	· Şm	3	1.50	radiolokasiya	Radarsat-2	,
3	5	03.07.2012	07:39:27	7.23400	3,9030	platformadan	antropogen	Neft daşları	Şm	3	1.50	radiolokasiya	Radarsat-2	
4	4	03.07.2012	07:39:27	130.80000	35,4050	platformadan	antropogen	Neft daşları	, Şm	3	1.50	radiolokasiya	Radarsat-2	
5	3	03.07.2012	07:39:27	2.02200	2.4780	platformadan	antropogen	Neft daşları	Şm	3	1.50	radiolokasiya	Radarsat-2	
6	2	03.07.2012	07:39:27	206.40000	37.2520	platformadan	antropogen	Neft daşları	· Şm	3	1.50	radiolokasiya	Radarsat-2	
7	10	03.07.2012	07:39:27	95.37200	32.0180	platformadan	antropogen	0	Şm	3	1.50	radiolokasiya	Radarsat-2	
8	9	03.07.2012	07:39:27	30.55500	10.5180	platformadan	antropogen	Neft daşları	Şm	3	1.50	radiolokasiya	Radarsat-2	
9	8	03.07.2012	07:39:27	2062.30000	237.7810	platformadan	antropogen	Neft daşları	Şm	3	1.50	radiolokasiya	Radarsat-2	

Результат дешифрирования нефтяного разлива на нефтепромысле «Нефтяные камни» по данным радиолокационного снимка RADARSAT2 (2012). Данные о метеорологических условиях на дату съёмки даны в таблице, которые помогают принимать решение по загрязнению морской среды.

ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ОБРАБОТКИ


1. ОБНОВЛЕНИЕ ТОПОКАРТ И ДИНАМИКА ОБЪЕКТОВ ИНФРАСТРУКТУРЫ

ОЦЕНКА ЭФФЕКТИВНОСТИ

РЕКУЛЬТИВАЦИОННЫХ

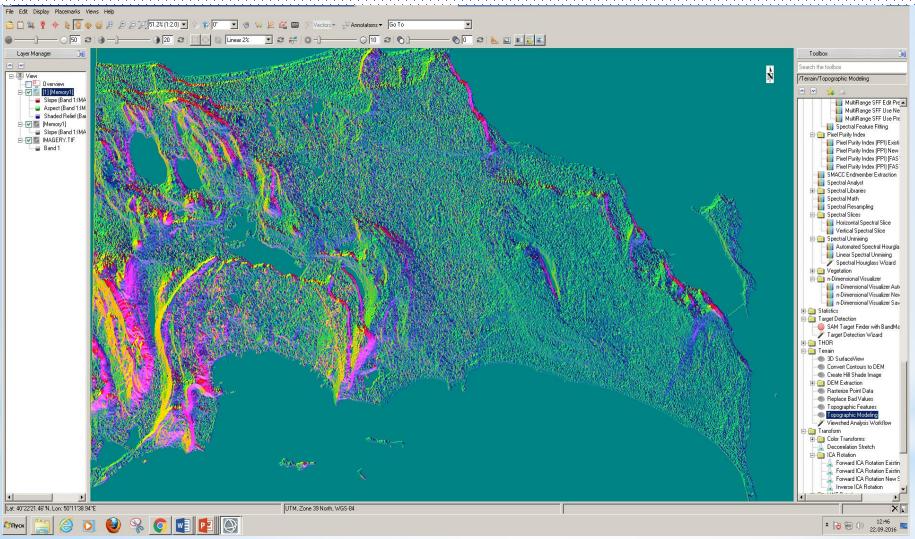
МЕРОПРИЯТИЙ НА СУШЕ

2007. Cнимок IKONOS

2014. Cнимок AZERSKY

нефтепромысла БИБИЭЙБАТ в 2007 г.

Озёрные системы нефтепромысла БИБИЭЙБАТ в 2014 г. после рекультвации

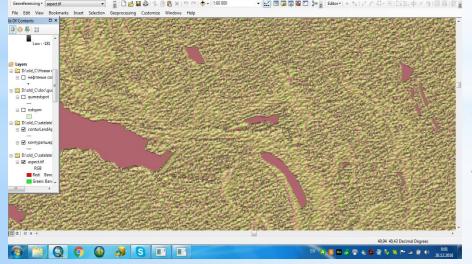

Карта расположения нефтяных скважин по результатам дешифрирования космического снимка

SPOT 7 2013 года

Озёрные системы загрязнённые при добыче нефти

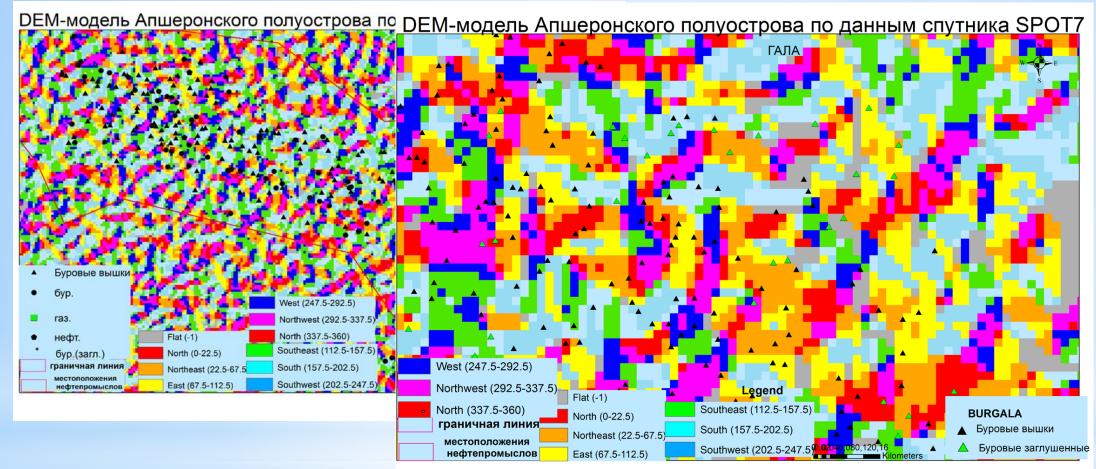
Карта расположения нефтяных скважин в 2014

Возможности использования данных со спутника AZERSKY при поиске и разведке нефтегазовых месторождений

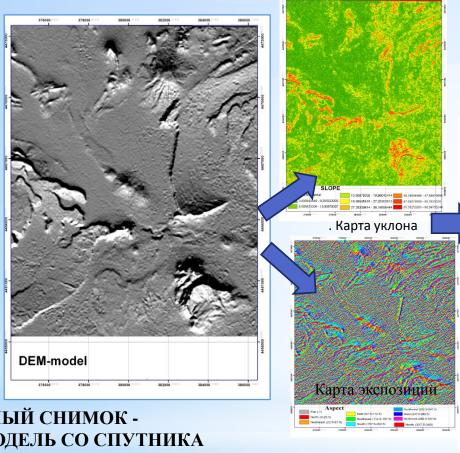


^{*}Топографическая модель рельефа: комбинация уклона, экспозиции и тени. Рельеф местности играет особую роль при разведке нефти

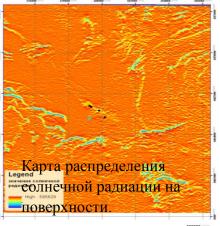
Изменение геоморфологических параметров уклона, экспозиции и кривизны позволяют в различных ракурсах вести разведку нефти и газа.



Уклон 34 градусов и азимут 145гр.


МОДЕЛЬ КРИВИЗНЫ МЕСТНОСТИ используют для линеаментного анализа

Один из аспектов интерпретации


Один из аспектов интерпретации: На карту уклона и экспозиции, производных от DEM- модели с помощью оверлейных операций накладываются векторные модели перспективных и неперспективных нефтяных скважин. Визуальный анализ показывает, что перспективные скважины расположены на северо-западных направлениях экспозиции, неперспективные скважины на этом месторождении находятся на юго-восточном направлениях экспозиции

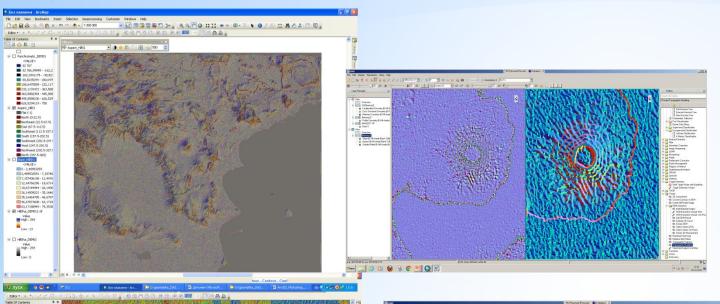
Задача определения количества солнечной радиации, падающей на единичную площадку

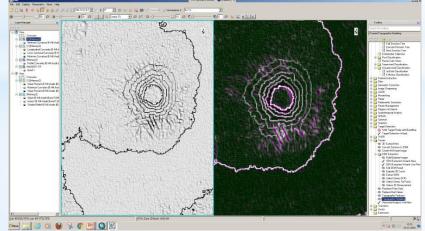
исходный снимок -**DEM МОДЕЛЬ СО СПУТНИКА** AZERSCY.

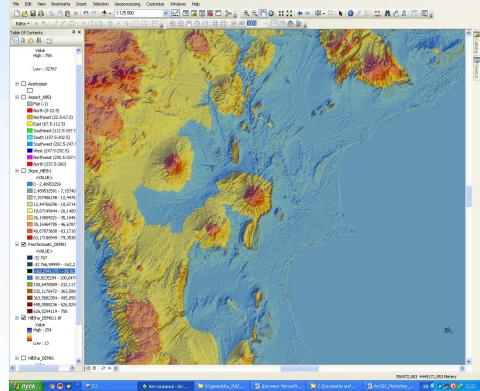
Выходная информация: карта уклона и экспозиции поверхности\. Карта распределения солнечной радиации для поиска рационального местоположения солнечных панелей

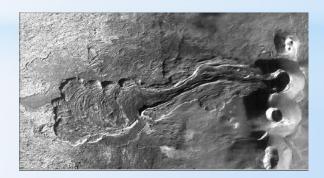
Расчёт количества солнечной

радиации в точках на различных уровнях склона Работы выполнил магистр 2-го курса Мамедов Турал


Применение:


- 1.В геологии позволяет оценить особенности эрозионных процессов с учетом гидрологических ресурсов для их развития: чем больше удельная водосборная площадь, тем больше вероятность развития эрозии.
 - 2. К сельскому хозяйствуколичественная оценка площадной и линейной эрозии и влияния рельефа на распределение влаги.
 - 3. Расчет может быть осуществлен различных временных ДЛЯ периодов с учетом сезонности и позволяет выбрать оптимальные участки под конкретные сельскохозяйственные культуры.


ИСПОЛЬЗОВАНИЕ ДАННЫХ СПУТНИКА AZERSKY И ГИС-ТЕХНОЛОГИЙ ДЛЯ МОНИТОРИНГА СОВРЕМЕННОГО ВУЛКАНИЗМА


Производные карты от DEM-модели местности с различными параметрами для исследования грязевых вулканов.

Перспективная работа совместно с сейсмологами (тема на следующий год)

Спасибо за внимание

Национальная Академия Авиации, Азербайджан, г. Баку, AZ-1045, Бина, 25-й км e-mail: spaseazer@rambler.ru

