АНАЛИЗ ЛЕДОВОЙ ОБСТАНОВКИ КРУПНЫХ ПРЕСНОВОДНЫХ ОЗЕР ПО ДАННЫМ SMOS

В.В.Тихонов^{1,2}, И.В.Хвостов³, А.Н.Романов³, Е.А.Шарков¹

(1) Институт космических исследований РАН, Москва
 (2) Московский физико-технический институт (государственный университет), Долгопрудный

(3) Институт водных и экологических проблем СО РАН, Барнаул

ПРЕСНОВОДНЫЙ ЛЕД

 $V = 1.6 \times 10^3 \text{ km}^3$

 $S = 1.7 \times 10^6 \,\mathrm{Km}^2 \approx S_{\Gamma \mathrm{pennanduu}}$

Tedesco, M. (Ed.). Remote sensing of the cryosphere, JohnWiley & Sons, Oxford, England, 2015

SMOS (Soil Moisture and Ocean Salinity)

MIRAS

(Microwave Imaging Radiometer using Aperture Synthesis)

 $f = 1.4 \Gamma \Gamma \mu$ $\theta = 10^{\circ} \div 65^{\circ}$

Продукт L1C SMOS v.620 $T_B^h, T_B^v, \Delta T = 5 \text{ K}$ l = 15 км $\theta = 42.5^\circ$

ИССЛЕДУЕМЫЕ ОЗЕРА

Lake Name	Region	Latitude	Longitude
Baikal	Southern Siberia, Russia	54.17° N	108.91° E
Ladoga	Northwestern Russia	60.88° N	31.37° E
Huron	Great Lakes of North America	44.56° N	82.41° W
Great Slave	Northwest Territories of Canada	61.28° N	$114.80^{\circ}~\mathrm{W}$
Great Bear	Northwest Territories of Canada	65.97 [°] N	$120.57^{^\circ}\mathrm{W}$

Байкал

Ладожское озеро

Большое Медвежье озеро

Большое Невольничье озеро

Озеро Гурон

Ладожское озеро

Большое Медвежье озеро Большое Невольничье озеро

Озеро Гурон

Климатические и гляциологические данные

Модель микроволнового излучения пресноводного озера

$$\frac{\theta_{0}}{\frac{\theta_{0}}{\frac{1}{2}}} = \sum_{j=1}^{2} \frac{T_{j} |W_{j}|^{2}}{\left|1 - r_{j}^{-} r_{j}^{+} \exp(2i\psi_{j})\right|^{2}} \times \left[\left(1 - \exp(-2\operatorname{Im}\psi_{j})\right)\left(1 + \left|r_{j}^{-} \exp(i\psi_{j})\right|^{2}\right) + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right)\operatorname{Im}\left(\exp(i\psi_{j})\right) \times \left[\frac{|k_{z_{j}}|^{2} - k_{x}^{2}}{|k_{j}|^{2}}\right] \frac{\operatorname{Re}Z_{j}}{\operatorname{Re}Z_{0}} + T_{3}|W_{3}|^{2}\frac{\operatorname{Re}Z_{3}}{\operatorname{Re}Z_{0}} + \frac{1}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right)\operatorname{Im}\left(\exp(i\psi_{j})\right) \times \left[\frac{|k_{z_{j}}|^{2} - k_{x}^{2}}{|k_{j}|^{2}}\right] \operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \times \left[\frac{|k_{z_{j}}|^{2} - k_{x}^{2}}{|k_{j}|^{2}}\right] + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \left[1 + \left|r_{j}^{-} \exp(i\psi_{j})\right|^{2}\right) + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \left[\frac{\operatorname{Re}Z_{j}}{\operatorname{Re}Z_{0}} + T_{3}|W_{3}|^{2}\frac{\operatorname{Re}Z_{3}}{\operatorname{Re}Z_{0}}\right] + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \left[\frac{\operatorname{Re}Z_{j}}{\operatorname{Re}Z_{0}} + T_{3}|W_{3}|^{2}\frac{\operatorname{Re}Z_{3}}{\operatorname{Re}Z_{0}}\right] + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \left[\frac{\operatorname{Re}Z_{j}}{\operatorname{Re}Z_{0}} + T_{3}|W_{3}|^{2}\frac{\operatorname{Re}Z_{3}}{\operatorname{Re}Z_{0}}\right] + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\left(r_{j}^{-} \exp(i\psi_{j})\right) \operatorname{Im}\left(\exp(i\psi_{j})\right) \left[\frac{\operatorname{Re}Z_{j}}{\operatorname{Re}Z_{0}} + T_{3}|W_{3}|^{2}\frac{\operatorname{Re}Z_{3}}{\operatorname{Re}Z_{0}}\right] + 4\frac{\operatorname{Im}\psi_{j}}{\operatorname{Re}\psi_{j}}\operatorname{Re}\psi_{j}^{2}$$

$$W_{j} = \prod_{m=1}^{j} \frac{Z_{m-1}^{in+} + Z_{m-1}}{Z_{m-1}^{in+} + Z_{m}} \exp(i\psi_{m-1}), \ Z_{j}^{in+} = Z_{j} \frac{Z_{j-1}^{in+} - iZ_{j} \operatorname{tg}\psi_{j}}{Z_{j} - iZ_{j-1}^{in+} \operatorname{tg}\psi_{j}}, \ Z_{j}^{in-} = Z_{j} \frac{Z_{j+1}^{in-} - iZ_{j} \operatorname{tg}\psi_{j}}{Z_{j} - iZ_{j+1}^{in-} \operatorname{tg}\psi_{j}}$$

$$\psi_{j} = k_{z_{j}}h_{j}, \quad k_{z_{j}} = k_{j}\cos\theta_{j}, \quad k_{x} = k_{0}\sin\theta_{0}, \quad k_{j} = \frac{2\pi\sqrt{\varepsilon_{j}}}{\lambda}, \quad \cos\theta_{j} = \sqrt{\frac{\varepsilon_{j} - \varepsilon_{0}\sin^{2}\theta_{0}}{\varepsilon_{j}}}$$
 $r_{j}^{+} = \frac{Z_{j-1}^{in+} - Z_{j}}{Z_{j-1}^{in+} + Z_{j}}, \quad r_{j}^{-} = \frac{Z_{j+1}^{in-} - Z_{j}}{Z_{j+1}^{in-} + Z_{j}}, \quad Z_{j} = \begin{cases} \frac{1}{\sqrt{\varepsilon_{j}}\cos\theta_{j}}} & -\text{ горизонтальная поляризация} \\ \frac{\cos\theta_{j}}{\sqrt{\varepsilon_{j}}} & -\text{ вертикальная поляризация} \end{cases}$

Квазиволновая модель эффективной диэлектрической проницаемости (Quasi-wave model - QWM)

Байкал

Date

Ладога

Большое Медвежье озеро

Date

Большое Невольничье озеро

Date

Озеро Гурон

Входные параметры

Lacustrine	Region	Region	Region
Environment	1	2	3
Water			
Temperature	T_{Water}	T_{Water}	$\mathbf{T}_{\mathrm{Water}}$
Lake ice			
Temperature	<u>-</u> 9	$(T_{Water} + T_{Air})/2$	$0^{\circ} C$
Porosity	-	12-18 %	50 %
Diameter air particle	-	0.1 cm	0.1 cm
Volumetric wetness	1	3-8 %	25-50 %
Thickness	-	H_{ice}	H_{ice}
Snow cover			
Temperature		$\mathrm{T}_{\mathrm{Air}}$	$0^{\circ} \mathbf{C}$
Dry density	-3	0.3 g/cm^3	0.3 g/cm^3
Diameter ice particle	-	0.04 cm	0.06 cm
Volumetric wetness		0 %	8-20 %
Thickness	-	$\mathbf{H}_{\mathbf{snow}}$	5-10 cm

Ladoga

Model

2

3

1

Ладожское озеро

1

3

Большое Медвежье озеро

Большое Невольничье озеро

Влияние снежного покрова

Kang, K. K., Duguay, C. R., Howell, S. E. L.: Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada, The Cryosphere, 6, 235–254, https://doi.org/10.5194/tc-6-235-2012, 2012.

Спасибо!