Алгоритм определения интенсивности осадков по спутниковым измерениям в микроволновом диапазоне

Сазонов Дмитрий Сергеевич Институт космических исследований РАН e-mail: <u>Sazonov_33m7@mail.ru</u>

XV Всероссийская открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса» 13 - 17 ноября 2017 г. в Москва.

Методы определения интенсивности осадков

Методы оценки осадков в основном разделены на три главные категории основанных на типе наблюдений:

- ▶ видимые/инфракрасные методы,
- ▶ микроволновые методы
- ▶ смешанные(комбинированные) методы.

Алгоритмы использующие микроволновые измерения:

- ▶ преобразования исходных данных в псевдоканалы,
- ▶ физические и эмпирические алгоритмы,
- ▶ нейронные сети,
- ▶ и многие другие.

Выбор способа определения осадков

Таблица частот приборов SSM/I и МИРС

Рабочие частоты	Угол	Соответствующие	Угол	
SSM/I,	падения,	частоты МИРС,	падения,	
ГГц	град	ГГц	град	
19,35 (В, Г)		18,7 (В, Г)	53,1	
22,235 (B)	52 1	23,8 (В, Г)	54,4	
37,0 (В, Г)	33,1	36,5 (B, Γ)	53,1	
85,5 (B, Γ)		88 (B, Γ)	53,1	

Предлагается использовать относительно простой алгоритм ALG'85,

Special Sensor Microwave Imager (SSM/I)

Ferraro R.R. Special sensor microwave imager derived global rainfall estimates for climatological applications // *J. Geophys. Res.* 1997. Vol. 102. N. D14. pp. 16,715–16,735.

Излучение и рассеяние физическими объектами

Класификация объектов:

- Поглощающие/Излучающие
- Рассеивающие

Fig. 1. Examples of SSMI measurements for snow cover, aged sea ice, and precipitation over land. Brightness temperatures at vertical (V) and horizontal (H) polarization are plotted as a function of frequency.

TABLE 2. List of Sc Mate	attering and Absorbing crials				
Scattering Materials, $T_v(22) > T_v(85)$	Absorbing Materials, $T_v(22) < T_v(85)$ Cloud liquid water Melting snow New sea ice Vegetation Moist soil				
Precipitation Dry snow Aged sea ice Glacial ice Desert sand					
280 270 280 280 280 280 280 280 280 280 280 28	у ж. ү ж. н				

Fig. 2. Examples of SSMI measurements for precipitation over ocean. Brightness temperatures at vertical (V) and horizontal (H) polarization are plotted as a function of frequency. Since the SSMI does not contain a horizontal polarization channel at 22 GHz, its value is estimated using the vertical polarization measurement.

50

60

FREQUENCY (GHz)

40

70

80

90

100

Grody, N. C., Classification of snow cover and precipitation using the special sensor microwave/imager (SSM/I), *J. Geophys. Res.*, 96, 7423-7435, 1991.

XV Всероссийская открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса»

10

20

30

Индекс рассеяния и интенсивность осадков

Индекс рассеяния *SI* (Scattering Index):

 $SI_L = 451.9 - 0.44 \cdot Tb(19V) - 1.775 \cdot Tb(22V) + 0.00575 \cdot Tb(22V)^2 - Tb(85V)$ (Земля) $SI_W = -174.4 + 0.72 \cdot Tb(19V) + 2.439 \cdot Tb(22V) - 0.00504 \cdot Tb(22V)^2 - Tb(85V)$ (Вода) Интенсивность осадков I:

 $I = 0.00513 \cdot SI_L^{1.9468} \quad (Земля)$ $I = 0.00188 \cdot SI_L^{2.0343} \quad (Boda)$

Если индекс рассеяния SI над водой меньше 10К:

$$Q_{19} = -2.7 \cdot \left[\ln(290 - Tb(19V)) - 2.84 - 0.4 \cdot \ln(290 - Tb(22V)) \right]$$

$$Q_{37} = -1.15 \cdot \left[\ln(290 - Tb(37V) - 2.99 - 0.32 \cdot \ln(290 - Tb(22V)) \right]$$

Интенсивность осадков *I* по оценке капельной влаги: $I = 0.001707 \cdot (100 \cdot Q)^{1.7359}$

Минимальный восстанавливаемый уровень осадков составляет <u>0.3 мм/ч</u> Максимальный - <u>35 мм/ч</u>

Алгоритм классификации и вычисления интенсивности осадков

- По входным значениям телеметрии определяется произведено ли измерение над сушей или океаном.
- По радиояркостным температурам вычисляется индекс рассеяния SI.
- ▶ Вода.
 - (5) Если SI > 10К или Q₁₉ > 0.6мм или Q₃₇ > 0.2мм, проверяется условие наличия льда.
 - (6) Если льда нет, то вычисляется интенсивность осадков.
 - Суша.

- (2) Если SI > 10К, проверяется наличие снежного покрова.
- (3) Если снега нет, то проверяется наличие пустыни.
- (4) Если пустыни нет, то проверяется наличие сухой почвы.
- Если проверки не дали результата,
 вычисляется интенсивность осадков.
- Если хотя бы одно из условий выполнено, то осадков <u>НЕТ</u>.

XV Всероссийская открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса»

6

Оценка погрешности определения осадков

Алгоритм ALG'85 можно представить как функцию: $I = f(T_{19V}, T_{19H}, T_{22V}, T_{37V}, T_{85V}).$

С обеспеченностью в 67% (среднеквадратическое отклонение) погрешность определения осадков (*δI*) можно найти по следующей формуле:

$$\delta I = \sqrt{\left(\frac{\partial f(x_1, \dots, x_n)}{\partial x_1}\right)^2 \cdot \delta x_1^2 + \dots + \left(\frac{\partial f(x_1, \dots, x_n)}{\partial x_n}\right)^2 \cdot \delta x_n^2},$$

где δx_i – погрешность измерения каждого параметра функции.

Измеренные радиояркостные температуры T_{19V} , T_{19H} , T_{22V} , T_{37V} и T_{85V} сильно зависят от состояния системы «океан-атмосфера», поэтому погрешности δT будут рассчитаны в зависимости от неопределенности состояния атмосферы и океана.

Оценка погрешности (продолжение)

Для оценки используется модель радиоизлучения системы «океан-атмосфера», построенная на основе многолетнего анализа спутниковых данных.

Название канала	Частота излучения, ГГц	$\frac{\partial T_{\mathcal{A}}}{\partial T_{\mathcal{S}}}$ (1K)	$\frac{\partial T_{\mathcal{A}}}{\partial S}$ (1‰)	$\frac{\partial T_{\mathcal{A}}}{\partial Q}$ (1mm)	$\frac{\partial T_{\mathcal{A}}}{\partial U_{10}}$ (1 m/c)	$\frac{\partial T_{\mathcal{A}}}{\partial \alpha}$ (20°)	Чувствитель- ность в элементе разрешения, К
<i>T19V</i>	18,7	0,4617	0,0034	0,5245	0,3405	-0,2528	0,4948
Т19Н	18,7	0,2739	0,0028	0,9076	1,1414	-0,1909	0,4948
<i>T22V</i>	23,8	0,2815	-0,0131	0,9732	0,174	-0,1961	0,2895
<i>T</i> 37 <i>V</i>	36,5	-0,0491	-0,0734	0,495	0,154	-0,4165	0,3149
T85V	85,5	0,1715	-0,0713	0,5879	-0,0668	_	0,3482

Чувствительность радиотеплового излучения.

F. J. Wentz, T. Meissner, AMSR ocean algorithm, version 2, Remote Sensing Systems, Santa Rosa, CA, 121 599A-1, 2000. [Online]. Available: <u>http://www.remss.com/papers/amsr/AMSR_Ocean_Algorithm_Version_2.pdf</u>.

T. Meissner and F. J.Wentz, The complex dielectric constant of pure and sea water from microwave satellite observations // IEEE Trans. Geosci. Remote Sens., vol. 42, no. 9, pp. 1836–1849, Sep. 2004.

T. Meissner and F. J.Wentz, The Emissivity of the Ocean Surface Between 6 and 90 GHz Over a Large Range of Wind Speeds and Earth Incidence Angles // IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3004–3026, Aug. 2012.

Данные для оценки погрешности

Из карты за 20 августа 2000г. взяты 11 пикселей с разным значением интенсивности осадков *I*.

Номер пикселя	Долгота, град.	Широта, град	<i>I no SI</i> , мм/ч	I по Q19, мм/ч	I по Q37, мм/ч	<i>Т19V,</i> К	<i>Т19Н</i> , К	<i>Т22V</i> , К	<i>Т37V</i> , К	<i>т85V</i> , К
1	204,125	24,375	2,9646	-	0,9849	230,477	197,216	254,908	245,753	248,434
2	234,625	-50,875	3,9075	-	1,0726	212,26	171,47	233,67	239,39	230,385
3	204,625	-35,875	5,3082	4,7024	3,2782	240,838	218,107	256,027	258,785	243,36
4	204,875	-35,875	6,9012	3,9272	2,6756	237,528	213,973	253,366	255,539	234,47
5	204,125	24,125	8,3908	5,6423	2,2414	246,207	224,971	261,930	256,450	233,66
6	204,125	23,625	10,012	7,0209	1,5975	248,737	231,135	262,387	253,247	229,737
7	193,625	-26,125	12,262	4,1328	2,6429	240,19	215,63	257,06	256,55	217,42
8	193,375	-26,125	16,208	6,1975	2,8683	246,35	225,76	260,59	258,66	210,22
9	193,125	-25,375	18,999	9,4823	2,2467	252,55	238,04	263,23	256,98	207,16
10	193,375	-25,375	22,858	7,9566	1,5608	248,77	232,9	260,04	252,05	196,213
11	193,625	-25,375	24,845	9,2719	1,6547	251,11	236,09	261,08	253,04	193,44

Радиояркостная температура и интенсивность осадков.

Погрешности определения осадков

Заключение

Представленные результаты свидетельствуют 0 возможности осадков с высокой интенсивности достаточно определения точностью (±10%). <u>Однако, следует критически</u> относится к интенсивности результатам определения осадков ПО оценке капельной влаги. Кроме того, точности восстановления I могут быть (определить) если предварительно восстановить увеличены паросодержание в атмосфере, температуру воды скорость И приводного ветра.

Оценка ошибок восстановления интенсивности осадков, связанных с ошибками калибровки радиометрических приемников и с систематическими ошибками, может быть выполнена только после введения прибора в эксплуатацию.

Спасибо за внимание