

К вопросу об обратном рассеянии электромагнитных волн СВЧ-диапазона ледяным покровом в Охотском море при малых углах падения на примере данных дождевого радиолокатора

В.Караев, М.Панфилова, Л.Митник, Ю.Титченко, Е.Мешков, З.Андреева*, Р.Волгутов*

Институт прикладной физики РАН, Нижний Новгород * НИЦ «Планета», Москва

Введение

Важность оперативного и глобального мониторинга морского льда обусловлена его влиянием на климат Земли. В климатической системе морской ледяной покров занимает уникальное положение, выступая в качестве ключевого предвестника глобального потепления. Развитие дистанционного зондирования делает эту задачу решаемой.

Данные с высоким пространственным разрешением (от метров - десятков метров) предоставляют радиолокаторы с синтезированной апертурой (PCA) и изображения в видимом и инфракрасном диапазонах длин волн.

Снимок MODIS

РСА изображение Sentinel-1

Введение

Регулярная информация о состоянии ледяного покрова с низким разрешением (от нескольких километров) может быть получена микроволновыми радиометрами и скаттерометрами.

Сплоченность ледяного покрова по данным AMSR2 (данные университета Бремен) С 1983 по 2000 г. для мониторинга ледовой обстановки использовалась радиолокационная станция бокового обзора (РЛС БО) Х-диапазона (9,6 ГГц), которая устанавливалась на ИСЗ Космос-1500 и последующих, имела разрешение 1-3 км.

В 2021 на орбиту будет выведен РЛС БО «МетеоСар» с разрешением около 1 км.

Радиолокационное изображение морского льда РСЛ БО

Двухчастотный дождевой радиолокатор (DPR)

DPR установлен на спутнике GPM (Global Precipitation Measurement), выведенном на орбиту JAXA в 2014 году. Радиолокатор предназначен для измерения вертикального профиля осадков в полосе обзора шириной \approx 240 км в Ки-диапазоне (длина волны $\lambda = 2,2$ см) и \approx 125 км в Ка-диапазоне, $\lambda = 0,8$ см с пространственным разрешением \approx 5 км. Углы падения меняются в пределах +/- 18,3° в Ки- и в +/- 9,1° в Ка-диапазоне. Последний отсчет по дальности относится к отражению от поверхности и измеряется сечение обратного рассеяния.

Двухчастотный дождевой радиолокатор (DPR)

При движении дождевого радиолокатора происходит сканирование по углу падения в направлении перпендикулярном направлению полета. На рисунке приведены типичные зависимости сечения обратного рассеяния в Ки-диапазоне от угла падения для водной поверхности (слева) и сплошного ледяного покрова при отрицательной температуре воздуха (справа). Звездочками разного цвета показаны сечения обратного рассеяния для нескольких последовательных сканов. Расстояние между сканами ≈5 км, что примерно равно размеру рассеивающей площадки.

Характерный вид зависимость сечения обратного рассеяния от угла падения для водной поверхности (слева) и ледяного покрова (справа) в Ки-диапазоне.

На примере ледяного покрова Охотского моря рассмотрим влияние типа рассеивающей поверхности (лед/вода) на сечение обратного рассеяния при фиксированном угле падения. Можно ли разделить морскую поверхность и ледяной покров не используя угловую зависимость?

Видимое изображение MODIS 29 ноября 2016 01:22 UTC с маской льда (красный цвет) (а), карта сплоченности льда (цветовая шкала в процентах) по данным университета Бремена за 29 ноября (б) и фрагмент карты-схемы ледовой обстановки НИЦ "Планета" за 26-28 ноября 2016 (в).

Радиолокационное изображение в Kuдиапазоне (слева), яркостная T_b at 37 GHz, температура на вертикальной поляризации частот 36,5 ГГц (справа) по данным GPM 11:10 UTC 29 ноября 2016.

30

20

10

0

-10

¥

10,65 Г

10,65 B

55.8°! 54 52.2°N 50.4°N 48.6°N 46.8°N 136°F

18,7 Γ

18,7 B

36,5 B

36,5 Γ

89 B

89 Γ

Изменение сечения обратного рассеяния и яркостной температуры вдоль разрезов хорошо коррелирует с картами ледовой обстановки университета Бремен и НИЦ Планета.

Зависимость сечения обратного рассеяния от долготы – черная кривая и зависимость яркостной температуры от долготы на частоте 10,6 ГГц: синяя кривая - вертикальная поляризация (В), красная кривая - горизонтальная поляризация (Г).

Измерения на частоте 89 ГГц позволяют улучшить пространственное разрешение до 6 км и алгоритмы позволяют определить сплоченность ледяного покрова.

Зависимость яркостной температуры от долготы на частоте 89 ГГц: черная кривая - вертикальная поляризация и красная кривая - горизонтальная поляризация.

Зимний ледяной покров (февраль 2017)

В феврале устанавливается низкая среднесуточная температура, что способствует увеличению толщины ледяного покрова. Снежный покров остается сухим.

B

сплоченность ледяного покрова 26 февраля 2017. На карте-схеме ледовой обстановки НИЦ «Планета» (в) дана классификация ледяного покрова (26.02-28.02.2017).

Зимний ледяной покров (февраль 2017)

Радиолокационное изображение в Ки-диапазоне (слева), поле яркостной температуры на частотах 36,5 ГГц на В-поляризации (справа) по измерениям GPM в 9:00 UTC 26 февраля 2017 г. Черная кривая на радиолокационном изображении – сечение для фиксированного угла падения.

Зимний ледяной покров (февраль 2017)

Зависимость сечения обратного рассеяния (кривая 1, угол падения 9,8°) и яркостной температуры на частоте 89 ГГц на В- (кривая 2) и Г-поляризации (кривая 3) от долготы

Сплоченность ледяного покрова

Для вычисления сплоченности ледяного покрова С по данным радиометра GMI за основу взят алгоритм ASI, разработанный для радиометра AMSR-E на спутнике Aqua. В алгоритме используется поляризационная разность яркостных температур Р на вертикальной (В) и горизонтальной (Г) поляризациях на частоте 89 ГГц.

 $P = T_{\mathfrak{s}}(89B) - T_{\mathfrak{s}}(89\Gamma)$

 $C = 1.64 \cdot 10^{-5} P^3 - 0.0016P^2 + 0.0192P + 0.9710$

Для «грубой» классификации поверхности (да/нет) можно использовать дополнительные фильтры, которые разделяют свободную ото льда морскую поверхность и ледяной покров разной сплоченности. В формуле используются яркостная температура на частотах 36,5 и 18,7 ГГц на В и Г поляризациях.

 $GR(36,5/18,7) = \frac{T_{g}(36,5B) - T_{g}(18,7B)}{T_{g}(36,5B) + T_{g}(18,7B)}$

Если *GR*(36,5/18,7) < 0,045, то присутствует лед.

Сплоченность ледяного покрова

Пространственное разрешение дождевого радиолокатора составляет примерно 5 км, и в элементе разрешения (пикселе) одновременно могут оказаться лед и вода. В этом случае сечение обратного рассеяния σ_0 можно представить в виде суммы сечения обратного рассеяния ледяного покрова σ_n и сечения обратного рассеяния воды σ_{0e} :

$$\sigma_0 = S_{\pi} \cdot \sigma_{0\pi} + \langle -S_{\pi} \rangle \sigma_{0\pi}$$

где S_n площадь ледяного покрова. Тогда сплоченность ледяного покрова C можно вычислить по следующей формуле $\sigma_n - \sigma_n$

$$C = \frac{\sigma_{0_{\theta}} - \sigma_{0}}{\sigma_{0_{\theta}} - \sigma_{0_{\pi}}}$$

Сплоченность ледяного покрова (ноябрь)

Толстая желтая линия показывает участки открытой воды (значение 0) и ледяного покрова (значение 1). Для льда сплоченность может принимать любые значения. Фильтр не может разделить лед и сушу.

55.5*

52.5*1

51*

S.

Пример работы алгоритмов классификации типа рассеивающей поверхности (жирная желтая кривая) и сплоченности ледяного покрова: красная кривая вычислена по радиометрическим данным (формула (4). Синяя кривая - по радиолокационным данным.

Сплоченность ледяного покрова (февраль)

Красная кривая показывает сплоченность ледяного покрова, вычисленную по данным радиометра на частоте 89 ГГц. Наблюдаются сильные флуктуации сплоченности ледяного покрова вдоль разреза. Скачок сплоченности наблюдается в конце разреза.

Пример работы алгоритмов классификации типа рассеивающей поверхности (жирная желтая кривая) и сплоченности ледяного покрова: красная кривая вычислена по радиометрическим данным, синяя кривая - по радиолокационным данным.

0.00

2.00

Ŧ 1.00

Преимущество дождевого радиолокатора состоит в том, что он измеряет интенсивность осадков и эта информация может использоваться при обработке.

Выводы

Проведена обработка данных двухчастотного дождевого радиолокатора в осенне-зимний сезон 2016-2017 года в Охотском море. Уникальность использованных данных обусловлена тем, что измерения сечения обратного рассеяния выполняются при малых углах падения (< 19).

Предложен новый алгоритм определения сплоченности ледяного покрова по сечению обратного рассеяния, измеренному при малых углах падения. Сравнение со стандартным алгоритмом, использующим данные многочастотного радиометра, показало его работоспособность.

Включение в алгоритмы данных дождевого радиолокатора об осадках позволит минимизировать ошибки, связанные с состоянием атмосферы.

Для оценки эффективности нового подхода исследования будут продолжены.

Спасибо за внимание!

Угол падения = 0

Угол падения = 1.5

сечение обратного рассеяния, дБ

угол падения 9 град.