МОДЕЛИРОВАНИЕ АТМОСФЕРНОГО РАДИАЦИОННОГО ПЕРЕНОСА С ИСПОЛЬЗОВАНИЕМ НОВЫХ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ЛИНИЯМ ПОГЛОЩЕНИЯ СН₄ И Н₂О В БЛИЖНЕМ ИК ДИАПАЗОНЕ

Чеснокова Т.Ю., Петрова Т.М., Солодов А.М., Трифонова-Яковлева А.М., Солодов А.А. Дейчули В.М.

Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения РАН, пл. Академика Зуева, 1, 634055, г. Томск, Россия e-mai: ches@iao.ru, , tanja@iao.ru, , solodov@iao.ru, asolodov@iao.ru, dvm91@yandex.ru

Спектральный диапазон 5500-6600 см⁻¹ применяется для дистанционного определения содержания в атмосфере основных парниковых газов, частности, он содержит сильные полосы поглощения метана 5900-6100 см⁻¹, которые используются в измерениях метана в международной сети TCCON[1] и спутника GOSAT[2]. Полосы поглощения H_2O в диапазоне 6500-6600 см⁻¹ дают возможность определять содержание водяного пара в атмосфере из наземных измерений солнечного излучения на Фурье-спектрометре [3]. В работах [3,4] было показано, что неопределенности в определении содержания CH₄ и H₂O из измеренных солнечных спектров за счет различия в современных спектроскопических базах данных могут достигать 2% для CH₄ и 5% для H₂O, и требуется уточнение параметров линий поглощения в данном диапазоне.

С помощью Фурье-спектрометра Bruker IFS 125HR (Институт оптики атмосферы CO PAH, г.Томск) были проведены измерения спектров поглощения молекул CH₄ и H₂O при вариации давления атмосферного воздуха (от 0 до 0,7 атм) в области 5900-6600 см⁻¹ (рис. 1 и 2). Поскольку в исследуемом спектральном диапазоне интенсивности линий поглощения CH4 и H₂O отличаются значительно друг от друга, то условия регистрации спектров поглощения отличались. Спектры поглощения CH₄ были зарегистрированы при оптической длине 320 см, молекулы воды – при оптической длине 633 м (использовалась многоходовая кювета с базой 30 м). Экспериментальная установка позволяет достичь высокого отношения сигнала к шуму и записать слабый спектр поглощения H_2^{16} O с интенсивностью около 10-27 см / молекула, то были получены новые данные о параметрах слабых линий H₂O. Определены значения интенсивностей, коэффициентов уширения и сдвига линий поглощения H₂O и CH₄ для стандартного контура линий Фойгта qSDV[5], учитывающего зависимость уширения от скоростей сталкивающихся молекул.

Проведено моделирование атмосферного пропускания в исследуемом спектральном диапазоне на основе параметров линий поглощения из различных версий спектроскопических баз данных HITRAN[6] и GEISA[7] и данных, полученных авторами доклада, и сделано сравнение с атмосферными солнечными спектрами, измеренными на наземном Фурьеспектрометре[8]. С помощью программы SFIT4 на основе различных спектроскопических баз было проведено восстановление содержания метана в столбе атмосферы и сравнение погрешностей восстановления. Оценка погрешностей восстановления осуществлялась в соответствии с [9]. Были рассчитаны систематическая и случайная погрешности, погрешность сглаживания, критерий однородности и ряд других.

Использование наших данных по параметрам линий поглощения H₂O и CH₄ позволило улучшить согласие модельных спектров с измеренными солнечными спектрами и уменьшить спектроскопическую часть погрешности определения содержания метана.

Исследование выполнено при частичной поддержке РФФИ, грант № 18-45-700011 р_а и в рамках Программы фундаментальных научных исследований государственных академий наук.

Рисунок 1. Измеренные спектры поглощения молекулы воды, уширенные давлением атмосферного воздуха

Рисунок 2. Измеренные спектры поглощения молекулы метана, уширенные давлением атмосферного воздуха

Сравнение атмосферного пропускания, вычисленного с различными спектроскопическими данными по параметрам линий, с измеренными солнечными спектрами

Проведено моделирование атмосферного пропускания с новыми параметрами линий H_2O , полученными в ИОА СО РАН, и сделано сравнение с атмосферными солнечными спектрами, измеренными наземным Фурье-спектрометром в обсерватории в Коуровке [8] со спектральным разрешением 0,02 см⁻¹. Моделирование атмосферных спектров осуществлялось при помощи пакета программ SFIT [11] с учетом основных поглощающих газов и внеатмосферного спектра Солнца. Профили высотного распределения температуры, давления и концентрации газов были взяты из NCEP/NCAR реанализа [10] и дополнены локальными наблюдениями в Коуровке. На основе атмосферных измерений были протестированы наши экспериментальные параметры линий поглощения H_2O для стандартного контура Фойгта и модифицированного контура Фойгта, учитывающего скорость столкновения молекул qSDV [5].

Рисунок 3. Измеренный атмосферный солнечный спектр (красный цвет на рис.), модельный спектр, вычисленный с нашими параметрами линий H₂O на основе контура qSDV (синий цвет) и различие между измеренным солнечным спектром и модельным спектром. Коуровка. Солнечный зенитный угол SZA=55.9°

Рисунок 4. Измеренный атмосферный солнечный спектр (красный цвет на рис.), модельные спектры, вычисленные с нашими параметрами линий H₂O на основе контура qSDV (синий цвет) и с данными HITRAN2016 (зеленый цвет). Коуровка. Солнечный зенитный угол SZA=55.9°

Таблица 1. Среднеквадратичное отклонение (RMS) модельных спектров от измеренных атмосферных солнечных спектров в разные месяцы

Дата	SZA, ⁰	IAO	HITRAN2012	HITRAN2016	GEISA2011	GEISA2015	UCL
31.03.2015	54,438	0,441609	0,442	0,442897	0,442369	0,442216	0,441917
01.04.2015	52,923	0,400139	0,402697	0,403237	0,402304	0,401896	0,402309
29.05.2015	44,795	0,462448	0,542878	0,527567	0,527128	0,53471	0,551402
16.06.2015	52,179	0,512155	0,57939	0,569456	0,55137	0,584243	0,591867
13.08.2015	50,351	0,472506	0,510011	0,503089	0,490016	0,516322	0,516557
15.09.2015	55,434	0,447166	0,472098	0,472901	0,46353	0,476003	0,475398

Из таблицы 1 видно, что RMS для данных ИОА (контур Фойгта) является наименьшим во всех случаях. Преимущество особенно заметно в летние месяцы, когда наблюдается большое содержание водяного пара и линии водяного пара оказывают наибольшее влияние на определение содержания метана в этом спектральном диапазоне. В июне RMS для спектроскопических данных ИОА на 14% меньше RMS по данным базы UCL, тогда как в сентябре RMS по данным ИОА на 5% меньше.

Погрешность исходных параметров входных данных

Были сделаны оценки влияния неопределенностей в задании солнечного зенитного угла (SZA), профиля температуры, профилей CO₂, CH₄, H₂O на определение содержания метана. Из таблицы 2 видно, что наибольший вклад в погрешность вносят неопределенность в спектроскопических данных и температура.

Таблица 2. Систематическая и случайная погрешности входных и восстановленных параметров при определении общего содержания метана (ОС СН₄)

	во входном	Погрешность	при		
	параметре		восстановлении ОС СН ₄ , %		
	Систематическая	Случайная	Систематическая	Случайная	
SZA	0,001 градусов	0,005 градусов	0,002 %	0,012 %	
Сглаживание			0,002 %	0,020 %	
Измерение		SNR=270		0,064 %	
Сдвиг базовой линии	0,001	0,001	0,159 %	0,159 %	
Содержание Н ₂ О	5%	5%	0,000 %	0,001 %	
Содержание СО ₂	5%	5%	0,000 %	0,001 %	
Интенсивность СО ₂	1%	1%	0,000 %	0,000 %	
Интенсивность CH ₄	3%	4%	2,994 %		
Интенсивность H ₂ O	1%	10%	0,000 %	0,000 %	
Показатель температурной зависимости полуширины линии CO ₂	1%	1%	0,000 %	0,000 %	
Показатель температурной зависимости полуширины линии CH ₄	1%	10%	0,003 %	0,034 %	
Показатель температурной	1%	10%	0,000 %	0,000 %	

зависимости линии H ₂ O	полуширины				
Коэффициент воздухом CO ₂	уширения	1%	1%	0,001 %	0,001 %
Коэффициент воздухом CH ₄	уширения	1%	10%	0,025 %	0,252 %
Коэффициент воздухом H ₂ O	уширения	1%	10%	0,000 %	0,001 %
Температура		0,5 K	16 К	0,261 %	0,542 %
Общая				3,45%	1,09%

При восстановлении содержания метана с использованием различных спектроскопических данных были оценены общая систематическая и случайная погрешности для шести рассмотренных измерений в разные месяцы.

Таблица 3. Осредненные результаты восстановления общего содержания метана, общая систематическая и случайная погрешности, [10¹⁵ молекул/см²]

	IAO	HITRAN12	HITRAN16	GEISA11	GEISA15	UCL
Общее содержание СН ₄ в столбе атмосферы	38052,02	38101,60	38126,17	38084,05	38113,72	38104,57
Общая случайная погрешность	283,58	283,77	271,90	282,93	283,70	283,62
Общая систематическая погрешность	1146,17	1147,50	1147,67	1147,00	1147,83	1147,83

Заключение

Использование параметров линий, полученных в ИОА, позволило уменьшить систематическую погрешность и RMS при решении обратной задачи восстановления содержания метана в столбе атмосферы по сравнению с последними версиями спектроскопических баз данных HITRAN2016 и GEISA2015 в спектральном диапазоне 6000-6100 см⁻¹ и повысить точность восстановления.

Литература

- Wunch D., Toon G.C., Blavier J.F.L., Washenfelder R.A., Notholt J., Connor B.J., Griffith D.W.T., Sherlock V., Wennberg P.O. The total carbon column observing network // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011. V. 369. № 1943. P. 2087–2112.
- 2. Greenhouse gases Observing SATellite (GOSAT) Project. <u>http://www.gosat.nies.go.jp</u>
- T.Yu. Chesnokova, M.V. Makarova, A.V. Chentsov, V.S. Kostsov, A.V. Poberovskii, V.I. Zakharov, N.V. Rokotyan Estimation of the impact of differences in the CH₄ absorption line parameters on the accuracy of methane atmospheric total column retrievals from ground-based FTIR spectra// J.Quant. Spectrosc. Radiat.Transfer. 2020. V.254. 107187.
- 4. T. Yu. Chesnokova, A. V. Chentsov, K. M. Firsov Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region,//J. Appl. Remote Sens. 2020. V.14. №3. 034510
- 5. Boone, C.D., Walker, K.A. and Bernath, P.F. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications// J.Quant. Spectrosc. Radiat.Transfer. 2007. V.105. P.525–532.
- 6. https://www.cfa.harvard.edu/hitran/
- 7. <u>http://www.pole-ether.fr</u>
- 8. Gribanov, K., Jouzel, J., Bastrikov, V., Bonne, J.-L., Breon, F.-M., Butzin, M., Cattani, O., Masson-Delmotte, V., Rokotyan, N., Werner, M., and Zakharov, V. Developing a Western Siberia reference site for tropospheric water

vapour isotopologue observations obtained by different techniques (in situ and remote sensing) //Atmos. Chem. Phys. 2014. V.14. P.5943–5957

- 9. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co., 2000
- 10. http://www.esrl.noaa.gov/psd/data/reanalysis/
- 11. Palm, M, "Theoretical background SFIT4," Sfit4 Error Analysis Workshop, (2013)