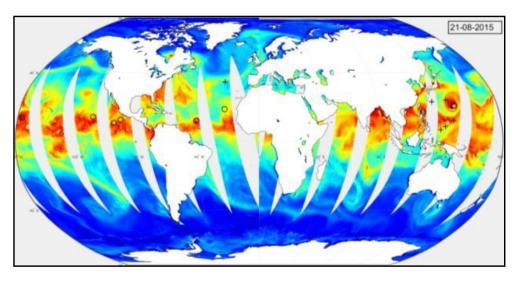
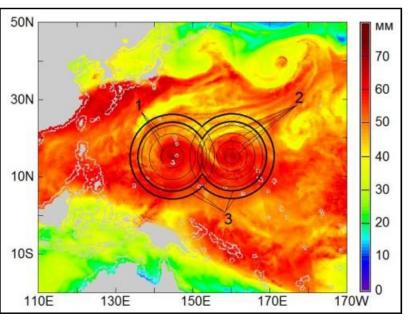
Восстановление температуры поверхности океана и скорости приводного ветра по данным прибора МТВЗА (РФФИ 18-02-01009-а.)

Сазонов Д.С., Кузьмин А.В., Пашинов Е.В. Институт космических исследований (ИКИ РАН)

e-mail: <u>sazonov_33m7@mail.ru</u>

XVIII Всероссийская открытая конференция с международным участием "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА 16 - 20 ноября 2020 г. Москва


Актуальность работы


В современном мире многие научные практические задачи И \mathbf{B} метеорологии, климатологии, рационального природопользования областях успешно других И решаются \mathbf{c} ПОМОЩЬЮ анализа спутниковых данных.

Наиболее востребованными для этих исследований являются данные дистанционного зондирования Земли (ДЗЗ) со спутников.

Одним из мощных инструментов ДЗЗ является микроволновая радиометрия.

К важным достоинствам данного метода относятся: всепогодность, глобальный охват поверхности и возможность восстанавливать большое число физических параметров поверхности и атмосферы.

Космические радиометры ДЗ

Среди микроволновых приборов дистанционного зондирования распространены температурновлажностные сканеры/зондировщики, такие как серия приборов AMSU, SSMI и их аналоги.

Одним из их аналогов являются приборы серии MTB3A российского производства.

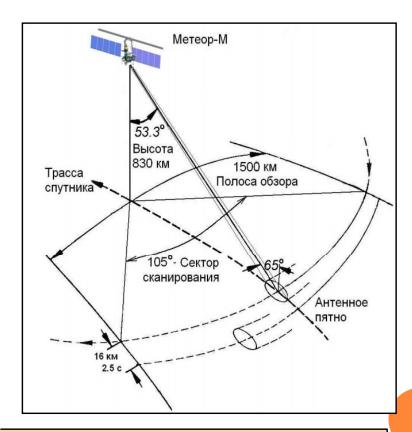
Данный прибор обладает большим числом радиометрических каналов, среди которых есть частоты, как у зарубежных приборов, также есть и дополнительные частотные каналы.

Главным отличием является угол поверхности, который зондирования составляет 65 градусов, когда ДЛЯ большинства приборов такого типа используется угол порядка 55 градусов.

Как было отмечено выше, с помощью микроволновых измерений можно восстанавливать большое число параметров системы «океанатмосфера». В настоящей работе внимание будет уделено определению скорости приводного ветра (U10) и температуре поверхности океана (ТПО).

ЦЕЛЬ РАБОТЫ:

Разработать алгоритм восстановления скорости приводного ветра и температуры поверхности океана по данным прибора МТВЗА.


Радиометр МТВЗА-ГЯ

По информационным характеристикам и области применения МТВЗА-ГЯ соответствует зарубежным аналогам — зондировщикам AMSU-A и AMSU-B (спутники NOAA, США и MetOp, ESA), ATMS (спутник SNPP, США), сканерам AMSR-E (спутник Aqua, США), AMSR2 (спутник GCOM-W1, Япония) и сканеру/зондировщику SSMIS (спутники DMSP F16—F19, США). Информационные характеристики и схема сканирования показаны на слайде.

Информационные характеристики радиометрических каналов

МТВЗА-ГЯ, приведённые к орбите КА «Метеор-М» (высота 830 км)

Центральная частота, ГГц	Поляри- зация	Кол-во полос	Ширина полосы, МГц	Пространственное разрешение (антенное пятно), км	Приведённый пиксель изо- бражения, км	Чувствитель- ность не хуже, К/пиксель	Высота макси- мума весовой функции, км
10,6	Β, Γ	1	100	89×198	32×32	0,5	_
18,7	Β, Γ	1	200	52×116	32×32	0,4	_
23,8	Β, Γ	1	400	42×94	32×32	0,3	_
31,5	В, Г	1	1000	35×76	32×32	0,3	_
36,5	Β, Γ	1	1000	30×67	32×32	0,3	_
42,0	Β, Γ	1	1000	26×60	32×32	0,4	-
48,0	Β, Γ	1	1000	24×43	32×32	0,4	_
91,65	Β, Γ	2	2500	14×30	16×16	0,6	_
52,80	В	1	400	21×48	48×48	0,4	2
53,30	В	1	400	21×48	48×48	0,4	4
53,80	В	1	400	21×48	48×48	0,4	6
54,64	В	1	400	21×48	48×48	0,4	10
55,63	В	1	400	21×48	48×48	0,4	14
$F_0 \pm 0,1$	Γ	4	50	21×48	48×48	0,4	20
$F_0 \pm 0.05$	Γ	4	20	21×48	48×48	0,7	25
$F_0 \pm 0,025$	Γ	4	10	21×48	48×48	0,9	29
$F_0 \pm 0.01$	Γ	4	5	21×48	48×48	1,3	35
$F_0 \pm 0,005$	Γ	4	3	21×48	48×48	1,7	42
183,31±7,0	В	2	1500	9×21	32×32	0,5	1,5
183,31±3,0	В	2	1000	9×21	32×32	0,6	2,9
183,31±1,0	В	2	500	9×21	32×32	0,8	4,7

 $F_0 = 57,2903 \pm 0,3222$ ГГц.

Г.М. Чернявский, Л.М. Митник, В.П. Кулешов, М.Л. Митник, И.В. Чёрный, Микроволновое зондирование океана, атмосферы и земных покровов по данным спутника «Метеор-М» № 2 // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. №4. С. 78–100

F

Подходы к решению задачи

Для восстановления параметров системы океан-атмосфера по радиометрическим спутниковым измерениям в основном применяют следующие подходы и методы:

- Итерационный подход основан на решение прямой задачи с перебором исходных параметров, которые обеспечивают минимальную разницу между расчетной и измеренной радиояркостной температурой. Минусы данного подхода длительность и неточности моделей.
- **Нейронные сети** достаточно часто применяются при решении задач дистанционного зондирования. Однако, достаточно сложено подобрать ее конфигурацию и требуется время для переобучения при поступлении новых данных.
- Построение регрессий достаточно простой, широко используемый метод, позволяющий быстро вычислять необходимые параметры на основе измерений и корректировать коэффициенты регрессии при получении новых данных.

Таким образом, для определения ТПО и скорости ветра будет применен метод построения регрессий.

6

ИСПОЛЬЗУЕМЫЕ РАДИОМЕТРИЧЕСКИЕ КАНАЛЫ

Радиометр МТВЗА –ГЯ имеет в своем составе 29 радиометрических каналов. Под радиометрическим каналом прибора МТВЗА понимается информация, полученная на одной частоте и на одной поляризации.

Проведя анализ радиометрических данных было выявлено, что на некоторых каналах есть шум и ошибки, поэтому каналы 42 (В, Г), 48 (В, Г) и 91.6 (Г) пока не включены в рабочий алгоритм.

Итого, для дальнейшего анализа используется 24 радиометрических канала.

Используемые каналы данных (частота ГГц, поляризации)						
10,6 (B, Γ)	$F_0 \pm 0.1 \; (\Gamma)$					
18.7 (B, Γ)	$F_0 \pm 0.05 \; (\Gamma)$					
23.8 (B, Γ)	$F_0 \pm 0.025 \; (\Gamma)$					
36.7 (B, Γ)	$F_0 \pm 0.01 \; (\Gamma)$					
31.5 (B, Γ)	$F_0 \pm 0.05 \; (\Gamma)$					
91.6 (B)	$183,31 \pm 7,0 \text{ (B)}$					
52,8 (B)	$183,31 \pm 3,0 \text{ (B)}$					
53,3 (B)	$183,31 \pm 1,0 \text{ (B)}$					
53,8 (B)						
54,64 (B)						
55,63 (B)						

 $F_0 = 57,2903 \pm 0,3222 \ \Gamma \Gamma u$

Составление регрессионного уравнения

Наиболее очевидным соотношением для регрессионного анализа данных, может быть соотношение вида:

$$Parametr = a \ w_1 + b \ w_2 + c \ w_3 + \dots + a^2 \ v_1 + b^2 \ v_2 + c^2 \ v_3 + \dots$$

- где: a, b, c и т.д. радиометрические каналы; w_i и v_i коэффициенты, определяемые в ходе обучения. Такая формула применялась при анализе данных SSM/I, и было отмечено, что при добавлении слагаемых со степенью больше чем 2 коэффициент корреляции увеличивается незначительно.
- При подборе регрессионного соотношения было выявлено, что уравнения в виде полиномов составленные из набора доступных радиометрических каналов не достаточно адекватно описывают связь радиояркостных температур с физическими параметрами (в данной работе это ТПО и Скорость ветра).
- Поэтому было принято решение использовать многочлен составленный по аналогии с формулой $(a + b) + (a + b)^2 = (a + b) + (a^2 + 2ab + b^2)$
- Всего доступно **24** (!) радиометрических канала, поэтому получается достаточно много членов вида (**2ab**). Для набора из **24** каналов таких перекрестных членов уравнения получилось **276** (!). И именно с помощью них получается адекватная связь физического параметра с радиояркосными температурами.

РЕГРЕССИОННОЕ УРАВНЕНИЕ

• Уравнение Регрессионная формула состоит из 324 слагаемых. В общем виде формулу можно записать так:

$$T\Pi O/U_{10} = \sum_{i=1}^{24} a_i \cdot Ch \underline{a}_i + 2 \cdot \sum_{j=1}^{276} b_j \cdot Ch \underline{b}_j + \sum_{k=1}^{24} c_k \cdot (Ch \underline{a}_k)^2$$

где: a_i , b_j , c_k — коэффициенты регрессии, Ch_a , Ch_b — набор радиометрических каналов. Набор Ch_a соответствует слагаемым из радиометрических каналов (например: $10,6(\Gamma)$, 55,63(B)). Набор Ch_b соответствует слагаемым из перекрестных радиометрических каналов вида (2ab) (например: $10,6(\Gamma)$ * 55,63(B)).

На первый взгляд может показаться, что регрессионное уравнение очень усложнено введением перекрестных слагаемых, однако именно они позволяют существенно повысить точность восстановления физических параметров.

Более того, при анализе уровня значимости коэффициентов регрессии и при обработке данных можно будет сократить уравнение оставив только значимые слагаемые.

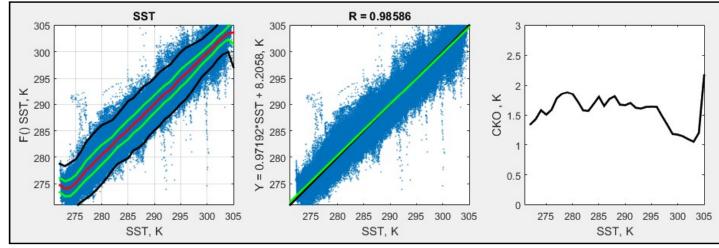
Нормирование переменных

С целью упрощения моделирования и введения безразмерных переменных выполняется нормирование переменных (радиояркостных температур, а также скорости ветра и температуры воды). Формулы для преобразования имеют следующий вид:

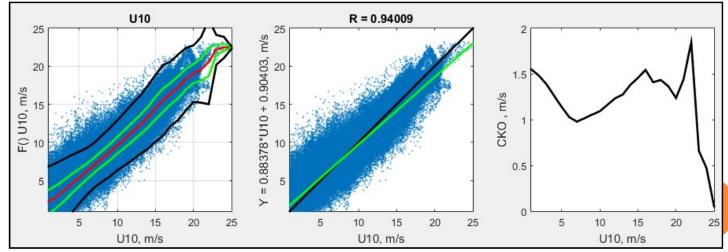
$$x^0 = (x_{\min} + x_{\max}) / 2$$
 $u = \Delta x = (x_{\max} - x_{\min}) / 2$

где Δx — интервал варьирования по оси x; x^0 — центр новой системы.

Переход от координат $x_1,..., x_n$, к новой безразмерной системе координат $x'_1,..., x'_n$ осуществляется линейным преобразованием координат $x'_i = (x_i - x^0) / \Delta x$, (i = 1...n), где n - количество значений переменной x. В нормированном виде верхний уровень равен +1, нижний уровень равен -1 ($-1 \le x'_i \le 1$), координаты центра равны нулю и совпадают с началом координат безразмерной системы. Обратный переход выполняется по формуле $x_i = x'_i * \Delta x + x^0$.


Результаты составления регрессии

Температура поверхности океана ТПО


На данных графиках представлены результаты расчета по составленным регрессиям. На графиках представлена корреляция между расчетом по регрессионным функциям данными из реанализа.

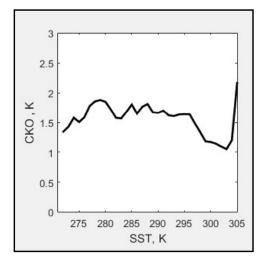
На корреляционной зависимости наложены интервалы σ и 3σ . Которые также представлены отдельным графиком.

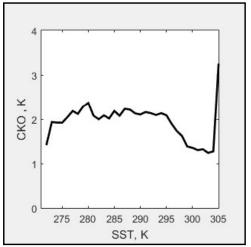
Результаты расчетов $T\Pi O$ показали, что скорость приводного ветра могут быть определены с высокой степенью достоверности. Так для ТПО среднеквадратичное (CKO) отклонение составило < 2 градусов в диапазоне температур от 273 до 305 К, а для скорости ветра СКО < 1.8 м/с при скоростях до 25 м/с.

Скорость приводного ветра U_{10}

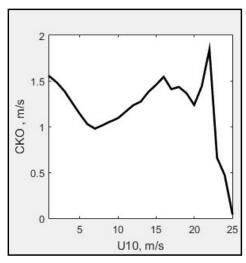
Результаты составления регрессии

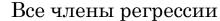
Температура поверхности океана ТПО

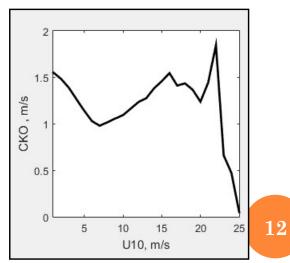

Была выполнена проверка коэффициентов регрессии по уровню значимости с целью убрать из уравнения факторы, влияние которых незначительно, либо полностью отсутствует, что упростит вид регрессионного уравнения.


Для оценки уровня значимости использовался t-критерий. Это позволило сократить число слагаемых:

- В уравнении для ТПО число слагаемых было сокращено до 110, что в 3 раза меньше, чем в исходном уравнении
- Для скорости ветра число параметров сократилось до 150, что в 2 раза меньше, чем в исходном уравнении.


Результат, показанный на графиках демонстрирует, что


- СКО для ТПО увеличилось, т.о. восстановить ТПО можно с точностью <2,4 градуса в диапазоне температур от 273 до 305 К
- Для U_{10} результат практически не изменился и остался на уровне СКО < 1.8 м/с при скоростях до 25 м/с.



Скорость приводного ветра U_{10}

Только значимые члены регрессии

ЗАКЛЮЧЕНИЕ

- Определение ТПО является одной из основных задач, без которой крайне проблематично решить определенный набор других важных задач. Представленные в настоящей работе результаты демонстрируют возможность восстановления ТПО и U_{10} по микроволновым данным прибора МТВЗА.
- Использование линеаризованных регрессий, являясь основным подходом к интерпретации данных дистанционного зондирования из космоса, позволяет применить данный подход к другим параметрам а также к спутниковым приборам для которых определение ТПО не предусмотрено изначально. Тестирование полученной регрессии проведено на реальных измерениях из космоса и демонстрирует адекватный результат.
- Все представленные в работе результаты являются нашим первым шагом в работе с данными прибора МТВЗА. Уже намечены работы по повышению точности восстановления ТПО и U_{10} , по разработке/усовершенствованию модели радиоизлучения системы «океан-атмосфера», проведение теоретических и практических исследований.
- Также в результате обработки массива имеющихся данных можно будет дать более подробную оценку полученных регрессионных соотношений. Возможно, получится еще уменьшить количество слагаемых, за счет сравнения результатов за различные временные периоды.

Спасибо за внимание

