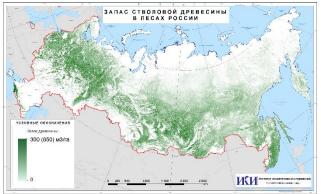
Восемнадцатая Всероссийская Открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса»

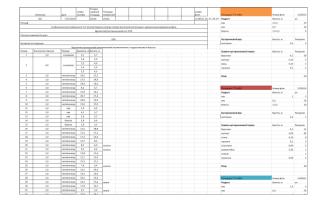
Использование результатов выборочных наземных измерений характеристик лесов для локальной оценки точности карты запасов стволовой древесины по данным MODIS


Жарко В.О.¹, Барталев С.А.¹, Бебчук Т.С.², Тутубалина О.В.³, Rees G.²

¹Институт космических исследований РАН ²Scott Polar Research Institute, University of Cambridge ³МГУ имени М.В. Ломоносова, Географический факультет

Цель исследования

При использовании данных локальных наземных измерений для продуктов обработки данных Д33 среднего/низкого валидации пространственного разрешения прямое сравнение значений пикселей и результатов наземных измерений на расположенных внутри них тестовых участках часто является некорректным в силу потенциальной пространственной неоднородности пикселя большого размера. В докладе представлен подход к использованию результатов наземных измерений характеристик лесов на тестовых участках размером 10-20 м для локальной оценки точности карты запасов стволовой древесины, разработанной в ИКИ РАН на основе спутниковых данных прибора 250 м. В пространственным разрешением представленного подхода лежит использование данных Д33 высокого разрешения для формирования пространственно-детальных оценок запаса на основе результатов наземных измерений и последующее их осреднение в пределах пикселей MODIS, содержащих тестовые участки, для учета их неоднородности.


Используемые данные

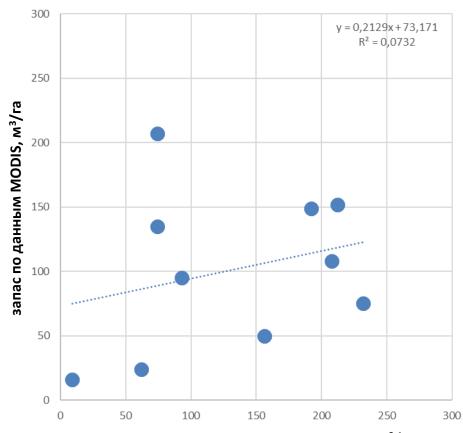
Карта запасов стволовой древесины в лесах России по данным MODIS с разрешением 250 м

Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.

Егоров В.А., Ворушилов И.И., Жарко В.О., Барталев С.А. Развитие метода оценки запасов стволовой древесины с использованием данных зимнего периода наблюдений // Материалы Семнадцатой Всероссийской Открытой конференции «Современные проблемы дистанционного зондирования Земли из космоса. 11-15 ноября 2019. ИКИ РАН, 2019. С. 420.

Данные выборочных наземных измерений характеристик лесов

Детальные описания и измерения характеристик лесного покрова для 11 тестовых участков на территории Якутии, выполненные в рамках проекта «Мультиплатформенный дистанционный мониторинг воздействия изменения климата на северные леса России» летом 2019 года специалистами Географического факультета МГУ, Института географии РАН и Института полярных исследований им. Скотта Кембриджского университета, в т.ч. измерения высот и диаметров деревьев на пробных площадях размером 20х20 или 20х10 м.


Данные указанных измерений использовались для расчета запаса на основе *Zianis, D. et al.* 2005. Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs 4. Tampere: Finnish Society of Forest Science.

Снимок Sentinel-2

Результаты измерений отражательной способности покрытой снегом земной поверхности в красном и ближнем ИК спектральных диапазонах по данным Sentinel-2B/MSI за 31 марта 2019 с пространственным разрешением 10 м.

Неоднородность пикселей MODIS

запас по данным наземных измерений, м³/га

Прямое сравнение значений запаса пикселей MOIDS размером 250 м и результатов наземных измерений на расположенных внутри них тестовых участках демонстрирует отсутствие согласованности ($R^2 = 0.07$) в силу пространственной неоднородности пикселей большого размера.

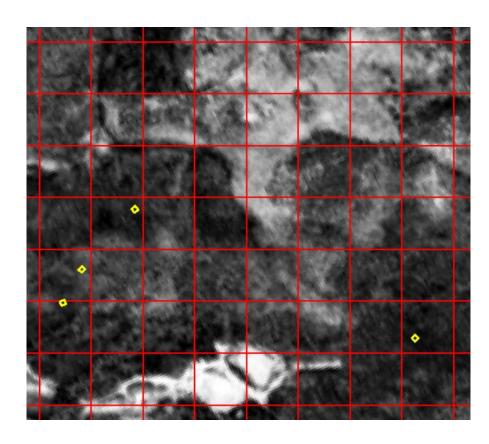
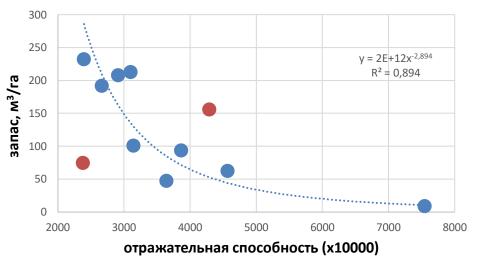
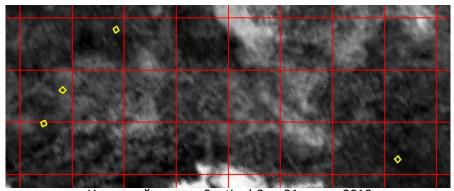
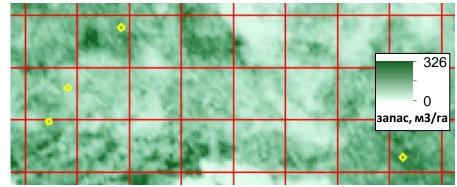



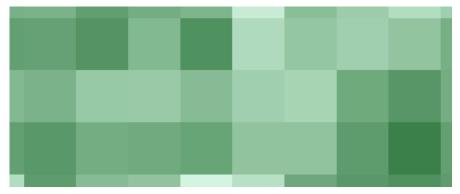
Иллюстрация неоднородности пикселей MODIS размером 250 м:


- красная сетка границы пикселей MODIS;
- желтые полигоны пробные площади 20x20 м;
- фон отражательная способность покрытой снегом земной поверхности в ближнем ИК диапазоне по данным Sentinel-2 (31.03.2019) с пространственным разрешением 10 м.

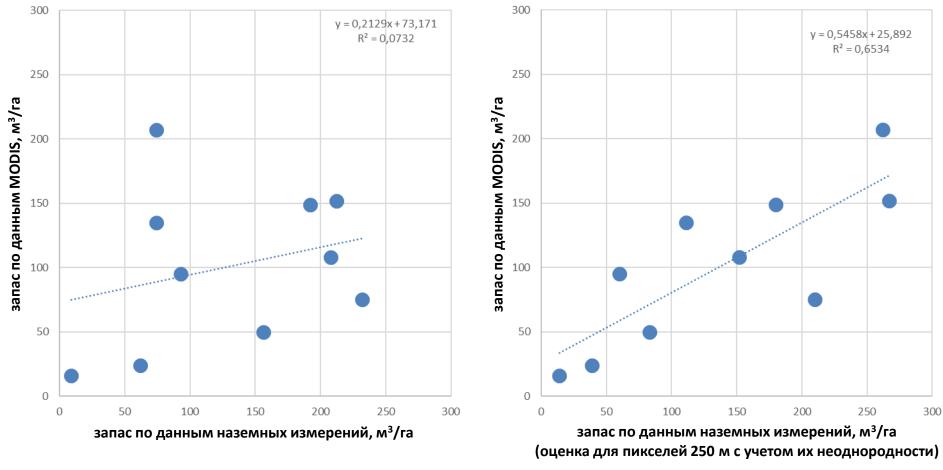
Решкалирование наземных измерений на основе данных Sentinel-2



Вверху: Для каждого тестового участка были рассчитаны значения запаса древесины по данным наземных измерений и средние значения отражательной способности покрытой снегом земной поверхности в ближнем ИК диапазоне по данным Sentinel-2. Указанные данные использовались для разработки регрессионной модели зависимости отражательной способности от величины запаса (два отмеченных тестовых участка были исключены как шумовые).


Справа: Применение указанной модели к данным исходного снимка Sentinel-2 позволило сформировать карту удельных запасов стволовой древесины лесного покрова вблизи тестовых участков с пространственным разрешением 10 м. Полученные оценки запаса усреднялись в пределах каждого пикселя размером 250 м, содержащего тестовый участок, и сравнивались со значениями запаса исходной карты по данным MODIS.

Исходный снимок Sentinel-2 за 31 марта 2019 с пространственным разрешением 10 м (ближний ИК канал)



Фрагмент карты запасов стволовой древесины лесного покрова вблизи тестовых участков с пространственным разрешением 10 м

Оценки запаса для пикселей размером 250 м на основе наземных данных

Результаты

Применение описанного подхода позволило продемонстрировать существенно более высокий уровень согласованности между оценками запаса по данным MODIS и по данным наземных измерений — если прямое сравнение значений пикселей и результатов наземных измерений на расположенных внутри них тестовых участках характеризуется величиной $R^2 = 0.07$ (слева), то применение настоящего подхода для учета неоднородности пикселей MODIS показывает значительно более высокое значение $R^2 = 0.65$ (справа).

При увеличении объема доступных данных наземных измерений в рамках предлагаемого подхода могут быть разработаны отдельные модели зависимости отражательной способности лесов в условиях наличия снежного покрова от величины запаса для насаждений различных пород, что потенциально позволяет более точно оценивать запас для пикселей 250 м по наземным данным и повысить уровень согласованности с оценками по данным MODIS.

Спасибо за внимание!

Работа выполнена в рамках российско-британского проекта **«Мультиплатформенный дистанционный мониторинг воздействия изменения климата на северные леса России»**. Проект финансируется Британским Советом (грант Institutional Links № 352397111) и Министерством науки и высшего образования РФ (уникальный идентификатор проекта RFMEFI61618X0099).

Авторы выражают благодарность специалистам Географического факультета МГУ, Института географии РАН и Института полярных исследований им. Скотта Кембриджского университета, выполнявшим полевые измерения, сьемки с БПЛА, и участвовавшим в обработке данных БПЛА и расчете параметров древостоев: А.А. Медведев, Е.И. Голубева, А.И. Терская, Н.В. Михайлов, А.А. Созонтова, А.С. Азарова, А.А. Стасько, Ю.И. Тимохина, О.М. Гоммерштадт, М.С. Черноморец, В. Fraser.

Обработка и анализ данных выполнялись с использованием ресурсов ЦКП «ИКИ-Мониторинг» (*Лупян Е.А. и др.* Опыт эксплуатации и развития центра коллективного пользования системами архивации, обработки и анализа спутниковых данных (ЦКП «ИКИ-Мониторинг») // Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 3. С.151-170.).