Вариации мелкодисперсных и грубодисперсных компонент аэрозольной оптической толщи атмосферы в Тункинской долине в 2004-2020 гг.

Яковлева И.П., Тащилин М.А., Татарников А.В., Щеглова Е.С.

Институт солнечно-земной физики СО РАН, г. Иркутск

Девятнадцатая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

15-19 ноября 2021, ИКИ РАН, г. Москва

Расположение Геофизической обсерватории ИСЗФ СО РАН

Основные технические характеристики фотометра CIMEL CE-318

Количество каналов 8

Длины волн 340, 380, 440, 500, 670, 870, 940 и 1020 нм

Ширина полосы интерфер. 2 нм (УФ каналы)-10 нм (видимая и ИК область

фильтров спектра)

Поле зрения коллиматора 1,2°

Полоса пропускания 10 нм

Рабочая температура: от -30 до +60 °C

Метод слежения за солнцем: слежение в зенитной и азимутальной плоскостях

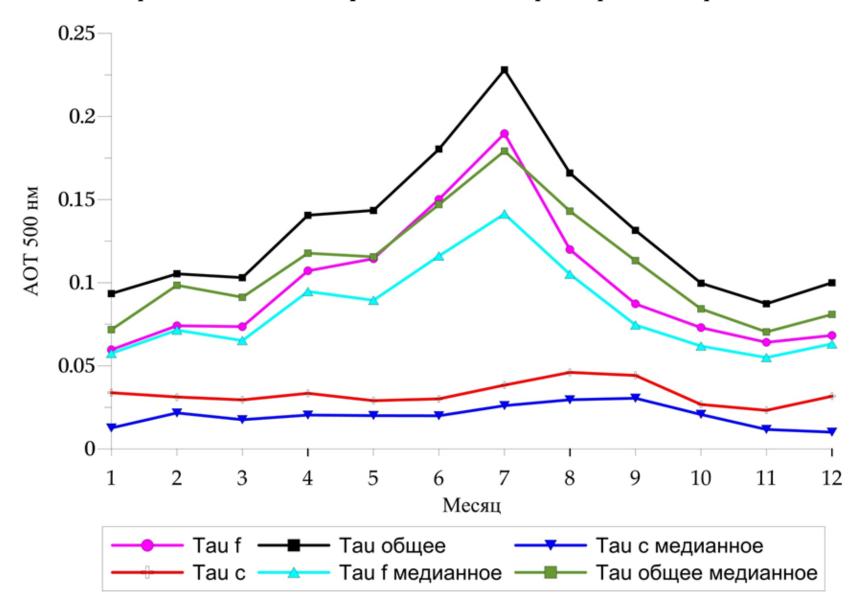
Погрешность измерений: ±0,01÷0,02

Источники питания:

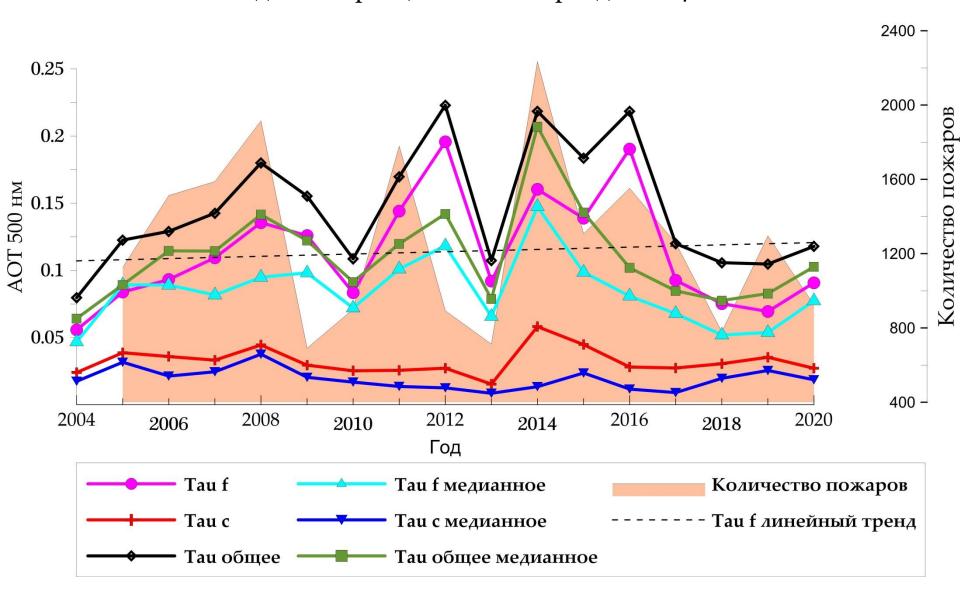
батареи для робота, солнечные панели или 220 В

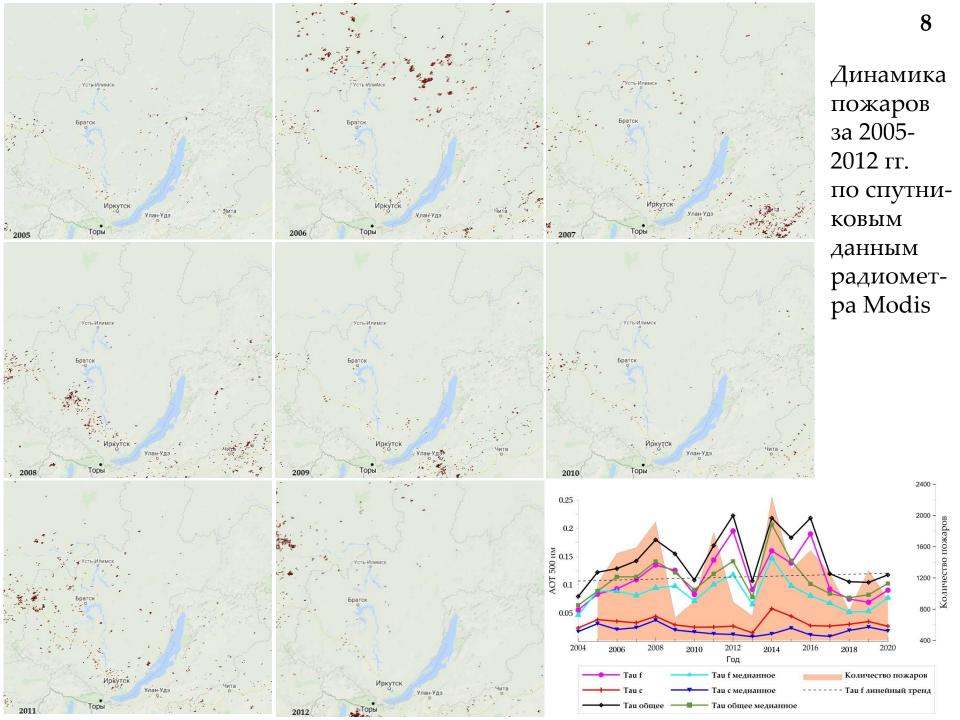
Общий вид фотометра в Геофизической обсерватории ИСЗФ СО РАН

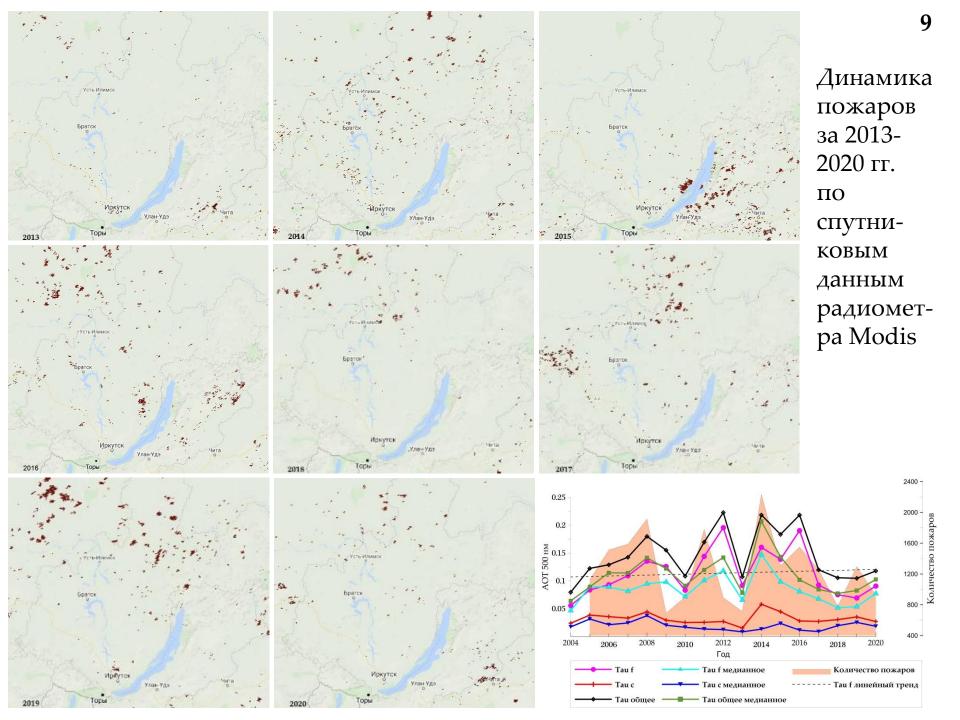
Расшифровка обозначений


$ au_{0.5}^a$	среднее значение общей АОТ 500 нм
$ au_{0.5}^a$ median	медианное межгодовое значение общей АОТ 500 нм
$ au_{0.5}^a$ min	минимальное межгодовое среднее значение общей АОТ 500 нм
$ au_{0.5}^a$ max	максимальное межгодовое среднее значение общей АОТ 500 нм
$ au_{0.5}^f$	среднее значение мелкодисперсной компоненты АОТ 500 нм
$\tau_{0.5}^{\tilde{f}}$ median	медианное межгодовое значение мелкодисперсной компоненты АОТ 500 нм
$ au_{0.5}^f$ median $ au_{0.5}^f$ min $ au_{0.5}^f$ max	минимальное среднее межгодовое значение мелкодисперсной компоненты АОТ 500 нм
$\tau_{0.5}^{f}$ max	максимальное среднее межгодовое значение мелкодисперсной компоненты АОТ 500 нм
$ au_{0.5}^c$	среднемесячное межгодовое значение грубодисперсной компоненты АОТ 500 нм
$ au_{0.5}^c$ median	медианное межгодовое значение грубодисперсной компоненты АОТ 500 нм
$ au_{0.5}^c$ min	минимальное среднее межгодовое значение грубодисперсной компоненты АОТ 500 нм
$ au_{0.5}^c$ max	максимальное среднее межгодовое значение грубодисперсной компоненты АОТ 500 нм

Сравнение значения АОТ в Геофизической обсерватории ИСЗФ СО РАН за период 2004-2020 гг.


Месяц	$ au_{0.5}^a$	τ _{0.5} median	$ au_{0.5}^a$ min	$ au_{0.5}^a$ max	$ au_{0.5}^f$	$ au_{0.5}^f$ median	$ au_{0.5}^f$ min	$ au_{0.5}^f$ max	$ au_{0.5}^c$	τ ^c _{0.5} median	$ au_{0.5}^c$ min	$ au_{0.5}^c$ max
январь	0.093	0.072	0.062	0.146	0.06	0.057	0.042	0.079	0.034	0.013	0.019	0.067
февраль	0.105	0.098	0.063	0.14	0.074	0.072	0.038	0.101	0.031	0.022	0.024	0.048
март	0.103	0.091	0.067	0.135	0.074	0.065	0.046	0.105	0.029	0.018	0.019	0.048
апрель	0.141	0.118	0.083	0.255	0.107	0.095	0.059	0.219	0.033	0.02	0.013	0.066
май	0.143	0.116	0.083	0.313	0.114	0.089	0.056	0.278	0.029	0.02	0.015	0.048
июнь	0.18	0.147	0.093	0.335	0.15	0.116	0.07	0.316	0.03	0.02	0.014	0.054
июль	0.228	0.179	0.079	0.627	0.19	0.141	0.072	0.604	0.038	0.026	0.007	0.086
август	0.166	0.143	0.06	0.344	0.12	0.105	0.035	0.23	0.046	0.03	0.01	0.113
сентябрь	0.131	0.113	0.073	0.223	0.087	0.075	0.049	0.144	0.044	0.031	0.011	0.117
октябрь	0.1	0.084	0.037	0.194	0.073	0.062	0.02	0.174	0.027	0.021	0.007	0.063
ноябрь	0.087	0.07	0.052	0.152	0.064	0.055	0.036	0.121	0.023	0.012	0.015	0.043
декабрь	0.1	0.081	0.055	0.16	0.068	0.063	0.046	0.095	0.032	0.01	0.009	0.065


Среднее АОТ 500 нм – 0.15 Средняя мелкодисперсная АОТ – 0.11 Средняя крупнодисперсная АОТ – 0.035 Максимальное среднее мелкодисперсной АОТ – 0.604, минимальное – 0.02 Максимальное среднее крупнодисперсной АОТ – 0.117, минимальное – 0.01


Сезонные вариации АОТ в Геофизической обсерватории за период 2004-2020

Межгодовые вариации АОТ за период с 2004 по 2020 г.

Основные результаты

Анализ мелкодисперсных и грубодисперсных компонент АОТ атмосферы в Тункинской долине позволил выявить следующие особенности:

- межгодовая изменчивость АОТ, в основном, обусловлена влиянием лесных пожаров и имеет следующий характер: максимальные АОТ мелкодисперсной компоненты за весь период наблюдения были получены в 2012, 2014 и 2016 гг., минимальные в 2009 и 2013 гг., тогда как пики крупнодисперсной АОТ наблюдались в 2008 и 2014 годах;
- для рассматриваемого 15-летнего периода наблюдается постепенное уменьшение замутнения атмосферы: выявлен линейный отрицательный тренд $au_{0,55}^f$ с общей тенденцией уменьшения на 0.014 при среднем значении 0.114;
- в сезонном ходе мелкодисперсной и крупнодисперсных фракций отмечаются отличия. Так, максимальное АОТ крупнодисперсной фракции приходится на август месяц, тогда как в мелкодисперсной фракции проявляются два максимума: в апреле и июле. Весенний максимум связан с активизацией фотохимических процессов образования мелкодисперсного аэрозоля. Летний максимум зависит от дымового аэрозоля, возникающего в результате лесных пожаров. Минимальные значения $\tau_{0.5}^a$ и $\tau_{0.5}^f$ наблюдаются в осенне-зимний период, тогда как в вариациях грубодисперсного аэрозоля минимум наблюдается в июне, а максимум в августе месяце.
- от июля к декабрю спад среднемесячных значений $au_{0,55}^f$ составляет более 60 %.

Спасибо за внимание!

Исследование выполнялось при финансовой поддержке Крупного проекта Министерства науки высшего образования "Фундаментальные основы, методы и технологии цифрового мониторинга и прогнозирования экологической обстановки Байкальской природной территории" (грант № 075-15-2020-787).