Применение метода главных компонент при анализе VIIRS Suomi спутниковых изображений вулканических выбросов

Н. В. Федосеева, А. Л. Львов Российский Государственный Гидрометеорологический Университет Санкт-Петербург

Актуальность исследования

• Критическая важность недопущения попадания воздушных судов в области присутствия пепла

Источники и методы исследования

- Метод главных компонент
- Модель Ash-RGB, разработанная Европейской Организацией Спутниковой Метеорологии

• Спутниковые данные получены с помощью сервиса LAADS-DAAC NASA.

Ash-RGB

Цвет	Канал [µm]	Физическая зависимость	Меньший вклад в общий сигнал	Больший вклад в общий сигнал
Красный	IR12.0 - IR10.8	Оптическая плотность облаков	Оптически тонкие кристаллические облака	Оптически тонкий вулканический пепел
Зеленый	IR10.8 - IR8.7	Фаза облаков	Кристаллические облака / Оптически тонкий вулканический пепел	Шлейфы SO ₂ / Капельные облака
Синий	IR10.8	Температура	Холодные облака	Нагретая поверхность / Теплые облака

Принцип модели SEVIRI Ash-RGB заключается в получении цветосинтезированного изображения с использованием псевдоканалов на основе разностных изображений 12-10.8 мкм и 10.8-8.7 мкм и канала 8.7 мкм.

Метод главных компонент

$$X_{n,b} = \begin{pmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{b,1} & \cdots & x_{b,n} \end{pmatrix}$$

$$X_k = \begin{pmatrix} x_1 \\ \vdots \\ x_b \end{pmatrix}$$

$$C_{b,b} = \begin{pmatrix} \sigma_{1,1} & \cdots & \sigma_{1,b} \\ \vdots & \ddots & \vdots \\ \sigma_{b,1} & \cdots & \sigma_{b,b} \end{pmatrix}$$

$$\sigma_{ij} = \frac{1}{N-1} \sum_{p=1}^{N} (DN_{p,i} - \mu_i) (DN_{p,j} - \mu_j)$$

$$(1)$$

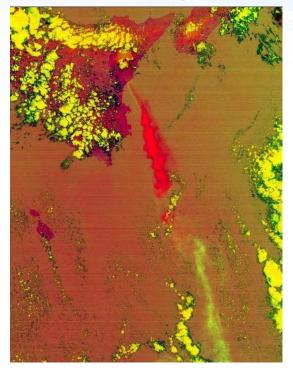
$$\sum_{1.5 \times 10^4} C_{0,1} + \sum_{1.5 \times 10^4} C_{$$

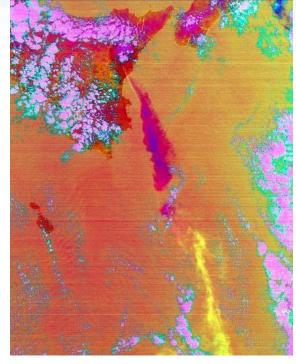
$$\det(C - \lambda I) = 0 \tag{5}$$

$$Y_b = \begin{pmatrix} y_1 \\ \vdots \\ y_b \end{pmatrix} = \begin{pmatrix} w_{1,1} & \cdots & w_{1,b} \\ \vdots & \ddots & \vdots \\ w_{b,1} & \cdots & w_{b,b} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_b \end{pmatrix}$$
 (6)

Геометрически, метод главных компонент можно представить как нахождение новых осей, ориентированных вдоль направлений с максимальной дисперсией

Метод главных компонент


THE TOP ISTUDIAL TO					
	VAR/COVAR	14	15	16	
	14	121.58	109.30	110.88	
	15	109.30	99.45	100.80	
	16	110.88	100.80	103.28	
	COR MATRIX	14	15	16	
	14	1.000000	0.994032	0.989552	
	15	0.994032	1.000000	0.994589	
	16	0.989552	0.994589	1.000000	
	COMPONENT	C1	C2	C3	
	% var.	99.51	0.36	0.13	
	eigenval.	322.71	1.18	0.42	
	eigenvec. 1	0.612137	-0.720379	-0.326102	
	eigenvec. 2	0.554300	0.096795	0.826670	
	eigenvec. 3	0.563950	0.686793	-0.458558	
	LOADING	C1	C2	С3	
	14	0.997301	-0.070880	-0.019157	
	15	0.998502	0.010530	0.053696	
	16	0.996880	0.073318	-0.029228	


В соответствии с таблицей, первая компонента описывает 99.51% общей дисперсии ряда, вторая — 0.36% и третья, соответственно, — 0.13%, что говорит о хорошей сходимости ряда.

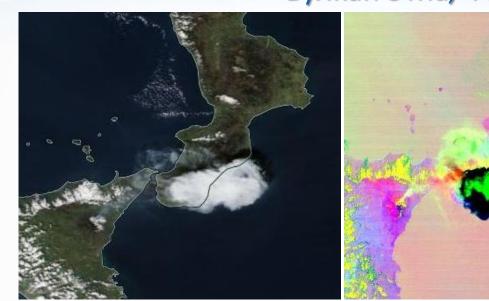
Пример полупрозрачного шлейфа

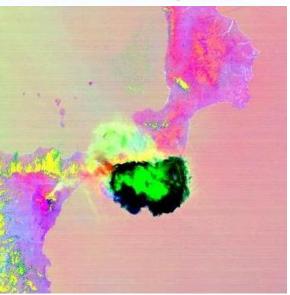
Вулкан Этна, 24 марта 2021 года

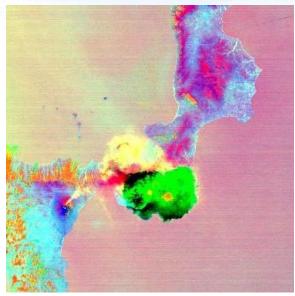
Естественные цвета

SEVIRI Ash-RGB

 Ash-RGB
 МГК
 Относится к:


 Тонкий шлейф пепла
 Плотный шлейф пепла


 Шлейф SO₂
 Смесь пепла и SO₂

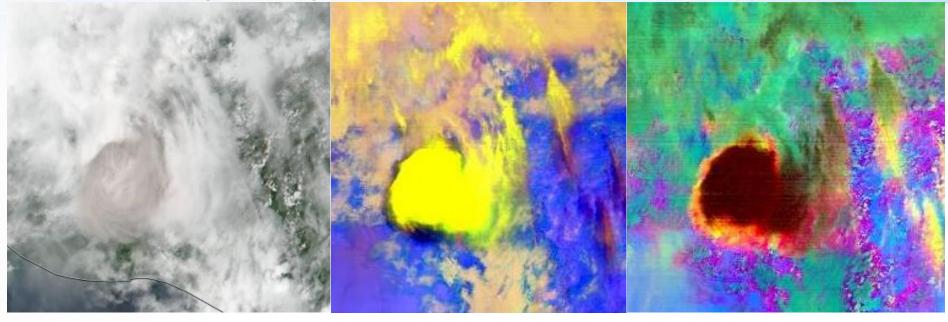

MΓK

На обработанных изображениях хорошо дешифрируется тонкий шлейф вулканического пепла ближе к жерлу вулкана Этна и двуокиси серы на большем удалении

Пример шлейфа со смешанным составом Вулкан Этна, 4 марта 2021 года

Естественные цвета

SEVIRI Ash-RGB


MΓK

Ash- RGB	МГК	Относится к:
		Тонкий шлейф пепла
		Плотный шлейф пепла
		Шлейф SO_2
		Смесь пепла и SO ₂

На обработанных изображениях отчётливо выделяется поднимающийся от жерла вулкана Этна шлейф, состоящий преимущественно из двуокиси серы с примесью вулканического пепла

Пример скрытого облачностью шлейфа

Вулкан Фуэго, Гватемала, 3 июня 2018 года

Естественные цвета

SEVIRI Ash-RGB

MLK

presentation-creation.ru

Ash- RGB	МГК	Относится к:
		Тонкий шлейф пепла
		Плотный шлейф пепла
		Шлейф SO_2
		Смесь пепла и SO ₂

изображении, обработанном с Ha помощью МГК выделяется плотный вулканический пепел, даже на участках, скрытых облачностью, в отличие от изображения, обработанного помощью Ash-RGB. При этом, на обоих изображениях выделяются области смеси вулканического пепла и двуокиси серы

Заключение

- Оба использованных метода позволяют анализировать состав вулканического шлейфа, выделяя примеси SO_2 , однако обработанные с помощью метода главных компонент изображения являются более информативными.
- Метод Ash RGB имеет ограничения, связанные с присутствием плотного шлейфа вулканического пепла.