

Исследование термохалинной структуры и динамических параметров антициклонических вихрей в Южно-Курильском районе М.А.Лебедева¹, Ю.В.Новиков²

¹Санкт-Петербургский государственный университет, E-mail: lebedevamasha671@gmail.com ²Тихоокеанский филиал ФГБНУ ВНИРО «ТИНРО», E-mail: yuriy.novikov@tinro-center.ru

Введение

Южно-Курильский район характеризуется сложной системой взаимодействий двух крупных течений: тёплого Куросио и холодного Ойясио. В результате взаимодействия этих двух течений возникает фронтальная зона с активным вихреобразованием.

результате взаимодействия Ойясио с антициклоничекими B вихрями, переносящими трансформированную субтропическую воду, формируются условия, благоприятные для скоплений гидробионтов (Булатов, Самко, Басюк, 2006; Антоненко, Новиков, 2017).

Исследуемый район

Использованные данные

В работе использовались данные ежедневного реанализа GLORYS12V1. Продукт GLORYS12V1 имеет пространственное разрешение 1/12° на 50 горизонтах (от 0 до -5500 м). Он основан на системе прогнозирования CMEMS. В продукте используется модель океанических условий NEMO. Данные спутниковых альтиметров, температура поверхности моря, сплочённость морского льда и вертикальные профили температуры и солёности in situ совместно ассимилируются с помощью фильтра Калмана уменьшенного порядка. В работе используется массив «GLOBAL_REANALYSIS_PHY_001_030»

Рис. 1. Карта северо-западной части Тихого океана.

Результаты. Термохалинная структура

Табл.1. Значения температуры и солёности в центрах вихрей на разных горизонтах за 15 августа 2007, 2008, 2009, 2010 и 2011 гг.

Глубина	2007		2008		2009		2010		2011	
	T, ℃	S, psu	T, ℃	S, psu	Т, °С	S, psu	T, ℃	S, psu	T, ℃	S, psu
A29										
0	22,2	34,23	18,0	32,98	-		-		-	
109	8,1	33,71	3,9	33,53	-		-		-	
902	3,2	34,17	2,6	34,40	-		-		-	
A31										
0	26,9	34,80	21,47	34,12	18,3	33,39	17,4	32,40	13,7	32,68
109	20,5	35,03	10,0	34,22	7,7	34,03	3,8	33,55	3,1	33,55
902	3,8	34,22	3,5	34,16	3,4	34,10	3,1	34,14	3,0	34,31
A33										
0	-		-		26,0	34,12	21,5	33,60	22,9	34,33
109	-		-		17,5	34,65	9,6	34,04	9,8	34,08
902	-		-		3,4	34,24	3,0	34,23	3,4	34,12
A34										
0	-		-		26,5	34,30	23,8	34,03	27,3	34,48
109	-		-		20,7	34,80	10,2	34,12	13,8	34,45
902	-		-		3,9	34,24	3,7	34,16	3,5	34,16

Рис.4. Треки вихрей.

Дольше всех из представленных вихрей в выбранном районе за период с 2007 по 2011 год наблюдался вихрь А31. Все вихри продвигались в северном и северовосточном направлениях. Дойдя до Камчатско-Курильского желоба, вихри быстро продвигаться вдоль него и выходить за пределы начинали рассматриваемого района. Средняя скорость смещения в северном направлении для вихря A29 составила 2,6 км/сут, для вихря A31 – 2 км/сут, для A33 – 1,6 км/сут и для вихря A34 – 3,4 км/сут.

Из таблицы 1 видно, что с продвижением на север температура и солёность в вихрях на всех представленных горизонтах понижается.

На рисунке 2 представлены вертикальные разрезы по температуре и солёности через вихрь А31. Вихрь распространялся на глубину приблизительно до 500 м, однако прогиб изотерм и изогалин прослеживается на глубинах >1500 м. Видны различия на восточной и западной перифериях: на западной стороне наблюдается тёплая и солёная вода Куросио, на восточной – вихря относительно холодная и пресная вода Ойясио.

На рисунке 5 хорошо выделяются антициклоны. Это типичная картина: на перифериях вихрей скорости могут достигать значений >1 м/с, а в центрах <0,1 м/с. На рисунке 6 видно, что скорости ниже 0,1 м/с наблюдаются и вглубь центра вихря. Скорости до 0,2 м/с наблюдаются до глубин 700-900 м.

В 2009 году центр вихря АЗ1 располагался на 41,5° с.ш. (рис. 7). Скорости на периферии стали меньше, вихрь чем когда 38° С.Ш. располагался на наблюдается (максимум на западной периферии и достигает значений 0,8 м/с). Изолинии со 0,2 M/C скоростью ДО глубины распространяются ДО

Литература.

1. Антоненко Д.В., новиков Ю.В. О нагульных миграциях сайры в Северо-Западной части Тихого океана // Изв. ТИНРО. 2017. Т. 188. С. 115-124.

2. Булатов Н.В., Самко Е.В., Басюк Е.О. Спутниковый мониторинг антициклонических вихрей в районе южных Курил, их влияние на динамику и промысел // Современные проблемы дистанционного зондирования Земли из космоса: сб. науч. Статей.-М.:ООО Азбука-2000. – 2006. - №.3. – С. 56-67.