

Перспективы создания съёмочных систем высокого разрешения для спутников Д33 малого класса

<u>Агапов П.А.</u>, Серебряков Д.С., Подчапаев И.О., Дрожжин В.В., Блинов М.А., Зайцев А.А., Кирюшин Д.В.

АО «Российские космические системы»

Основные задачи:

- Обеспечение высокого пространственного разрешения съемочной системы GSD 0,5 м с высоты орбиты 500 км
- Минимизация массы при условии сохранения высокого разрешения оптической системы
- Достижение высоких значений отношения сигнал/шум
- Обеспечение простоты и технологичности конструкции съемочной системы

Ключевые моменты:

- Выбор типа и конкретного образца приемника излучения
- Выбор типа и схемы объектива
- Выбор материалов и моделирование конструкции

Основные характеристики приемника излучения — КМОП матрицы GMAX4651

Параметр	Значение
Разрешение, пикселей	8424 × 6032
Размер пикселя, мкм	4,6 × 4,6
Емкость потенциальной ямы, ке-	12,5 18
Тип затвора	Глобальный затвор
Частота кадров, Гц	30 (12 бит)
Квантовая эффективность, %	67 (510 нм)
Динамический диапазон, дБ	64,3 65,8
Минимальное время экспозиции, мкс	25
Оптический формат	35 мм
Темновой ток, е-/с	6 (45 °C)
Потребляемая мощность, Вт	2,7
Выходные интерфейсы	24 sub-LVDS выходов по 864 Мбит/с каждый

Схема фокальной плоскости съемочной системы высокого разрешения

* – размеры фоточувствительной области ФПУ для справки

Вариант установки матриц в фокальной плоскости объектива

Расположение спектральных фильтров на матрице и их полосы пропускания

4

Оптическая схема съемочной системы высокого разрешения

	Параметр	Значение
	Тип схемы	Долла- Киркхэма
	Форма главного зеркала	Эллипсоид вращения
	<i>f</i> ', мм	4300
	D, мм	510
	Коэффициент экранирования	0,39
	Расчетное значение КПМ на частоте Найквиста, центр / край поля	24 / 14
	1 — Главное зеркало	
	2 – Вторичное зеркало	
2 3 4 5 1	3,4,5 — Линзовый корре	ктор

5

Характеристики материалов для изготовления зеркал съемочных систем

Характеристика	Карбид кремния	Ситалл	Алюминий
Плотность, г/см ³	3,14	2,53	2,70
Модуль упругости, ГПа	420	91	69
Относительная жесткость ГПа·м ³ /кг	133	36	26
Теплопроводность, Вт/м·К	130	1,6	236
КТР, 10 ⁻⁶ ·К ⁻¹	2,4	0,05	24,5
Теплоемкость, Дж/кг·К	750	821	897
Возможность получения оптической поверхности ВД спектра	есть	есть	есть
Возможность изготовления несущей конструкции	есть	отсутствует	есть
Возможность облегчения	есть	есть	есть

Модель съемочной системы высокого разрешения

- 2 Тубус-основание с установленным линзовым корректором
- 3 Главное эллиптическое зеркало
- 4 Вторичное сферическое зеркало
- 5 Узел фото-приемного устройства

Оценка качества изображения оптической системы

Модуляционно-передаточная функция объектива с расширенным угловым полем до 1,53° (край поля в пространстве изображений – 57,6 мм)

Исходное изображение с тест-объектом

Изображение с тест-объектом, пропущенное через смоделированную оптическую систему

Система перемещения фотоматрицы

Макет системы перемещения фотоматрицы

- Частота движения постоянна и равна: 10±0,1 Гц
- Скорость движения подвижной платформы на линейном участке: от 40 до 65 мм/с
- Точность установки скорости движения на линейном участке: ≤ 0,25 мм/с
- Отклонение перемещения от идеальной траектории движения:

не более 0,25 мкм (эквивалентно 1/18 размера пикселя)

Отработка режимов съемки с компенсацией смаза системой перемещения фотоматрицы

Работы по изготовлению рабочего места и отработке режимов съемки были проведены совместно с ИКИ РАН

Стенд для отработки режимов съемки с компенсацией смаза

Компенсация смаза при съемки с частотой 10 Гц в оконном режиме: а) не настроена, б) настроена

Предлагаемые характеристики съемочной системы высокого разрешения

Параметр	Значение
Фокусное расстояние f', мм	4300
Диаметр входного зрачка <i>D,</i> мм	510
Полоса захвата (3 матрицы, высота орбиты 500 км), км	12
Проекция пикселя в надире (500 км), м	0,53
Расчетное значение КПМ объектива на частоте 109 мм ⁻¹ (частота Найквиста), %, не менее	центр 24 / 14 край
Расчетное значение КПМ объектива 55 мм ⁻¹ , %, не менее	центр 43 / 32 край
Оптическая схема	Схема Долла-Киркхэма
Длина объектива, мм	1200
Масса прибора, кг	≤ 90
Спектральные диапазоны, реализуемые аппаратно, мкм	MC1: 0,45 – 0,52 MC2: 0,52 – 0,60 MC3: 0,63 – 0,69 MC4: 0,77 – 0,89
Отношение сигнал/шум (угол Солнца над горизонтом 30°, альбедо 0,8, в МС- каналах проекция пикселя 0,53 м, время экспозиции 3 мс)	MC1: ≥ 75 MC2: ≥ 85 MC3: ≥ 66 MC4: ≥ 50
Кадровая частота (4 спектральных канала), Гц	10
Разрядность сигнала, бит	10

Спасибо за внимание!

Список литературы

- 1. Формозов Б.Н. Аэрокосмические фотоприемные устройства видимого и инфракрасного диапазонов: Учеб. пособие /СПбГУАП; БГТУ «Военмех»; СПб., 2004. –127 с.
- 2. Ишанин Г.Г., Челибанов В.П. Приемники оптического излучения: Учебник / Под ред. В.В.Коротаева. –СПб.: Изд-во «Лань», 2014. –304 с.
- 3. *Тарасов В.В., Якушенков Ю.Г.* Двух- и многодиапазонные оптико-электронные системы с матричными приемниками излучения. –М.: Логос, 2007. –192 с.
- 4. GMAX4651: 51 Megapixels Global Shutter CMOS Image Sensor. Datasheet v1.3. GPIXEL Inc.
- 5. Бетенески Э., Хопкинс Р., Шеннон Р. Проектирование оптических систем: Пер. с английского под ред. Шеннона Р., Вайанта Дж. М.: Мир, 1983. 432 с.
- 6. Михельсон Н.Н. Оптика астрономических телескопов и методы ее расчета. М.: Физматлит, 1995. 333с.
- 7. Погарев Г.В. Оптические юстировочные задачи. Справочное пособие. Л., «Машиностроение» (Ленинградское отделение), 1974. 224 с.
- 8. Малышев И.В. Современные достижения и тенденции в изготовлении заготовок крупногабаритных аэрокосмических зеркал из карбида кремния. Сборник трудов III конф. «Будущее оптики», 2015, 9–11.
- 9. Добриков Н.С. Карбид кремния будущее космической оптики. Журнал ЛЗОС «Спектр» №5(77), 2017, 20–23.
- 10. Архипов С.А., Абдулкадыров М.А., Добриков Н.С. Анализ физико-технологических проблем изготовления облегченных термостабильных оптико-механических систем на основе карбида кремния для оптико-электронноий аппаратуры космического базирования. Научно-технический журнал «Контенант», 2017, т. 16, № 1, 28–46.
- 11. Зверев В.А., Кривопустова Е.В., Точилина Т.В. Оптические материалы. Часть 2. Учебное пособие для конструкторов оптических систем и приборов. СПб.: СПб НИУ ИТМО, 2013. –248 с.
- 12. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений: Пер. с английского Кирюшина А.В., Демьяникова А. И. – М.: Техносфера, 2010. – 560 с.

Объектив съемочной системы высокого разрешения

Параметр	Значение	
Фокусное расстояние f', мм	4300	
Диаметр входного зрачка D , мм	510	
Проекция пикселя GSD (500 км), м	0,53	
Угловое поле объектива 2 <i>w</i> , градусов	1,53 (эквивалентная полоса захвата 12 км)	
Центральное экранирование <i>є</i>	0,39	
Расчетное значение КПМ объектива на частоте 109 мм ⁻¹ (частота Найквиста), %, не менее	центр 24 / 14 край	
Расчетное значение КПМ объектива на частоте 55 мм ⁻¹ , %, не менее	центр 43 / 32 край	
Оптическая схема	Схема Долла-Киркхэма с линзовым корректором (ахрома состоящая из: Оптическая схема Главное зеркало — эллипсоид вращения, Вторичное зеркало — сфера, 3 линзы со сферическими поверхностями	
Масса линзы + зеркала, кг	12	
Длина объектива, мм	1200	
Спектральные диапазоны, мкм	MC1: 0,45 – 0,52 MC2: 0,52 – 0,60 MC3: 0,63 – 0,69 MC4: 0,77 – 0,89	

Система перемещения фотоматрицы

Частота движения постоянна и равна 10±0,1 Гц, скорость на линейном участке настраивается

Скорость движения подвижной платформы на линейном участке: от 40 до 65 мм/с Точность установки скорости движения на линейном участке: ≤ 0,25 мм/с

Отклонение перемещения от идеальной траектории движения: не более 0,25 мкм (эквивалентно 1/18 размера пикселя)