Дистанционная оценка биофизических характеристик растительного покрова по данным спутниковой системы Метеор-М (КМСС) и нейросетевой инверсии RT-модели

Плотников Д.Е, Колбудаев П.А., Ёлкина Е.С., Зимин М.В., Чжоу Ц., Зоров А.А., Лебедев С.В. Современные проблемы дистанционного зондирования Земли из космоса, 15 ноября 2023

Российский научный фонд

PHO

Russian Meteor-M series satellites for environmental monitoring

Покрытие территории РФ данными КМСС за один день (1 ноября 2020 года)

Территория России полностью покрывается изображениями КМСС-М за 3-5 дней, а совместно с КМСС-2 — за **1-2 дня** (разрешение 60 метров)

KMSS-M and KMSS-2 viewing geometry

KMSS-2 (Meteor-M 2.2 and Meteor-M 2.3)

KMSS-M (Meteor-M 2)

Meteor-M satellites and KMSS spectral cameras specifications

кмсс/мсу-100м кмсс/мсу-100м KMSS-M interband parralax is 8.6°

Characteristic	KMSS-M (Meteor-M- 2)	KMSS-2 (Meteor-M- 2.2)
Technique	Pushbroom	Pushbroom
Altitude	832 km	820 km
	Green: 0.535–0.575 μm	Green: 0.520–0.590 µm
Spectral bands	Red: 0.630-0.680 µm	Red: 0.640–0.690 µm
-	NIR: 0.760–0.900 μm	NIR: 0.785–0.900 μm
Spatial resolution at nadir	60 m	55 m
Revisiting rate	5 days	5 days
Radiometric resolution	8 bit	10 bit
Total swath	960 km	1020 km

Автоматическая технология обработки данных КМСС

More details on KMSS data and AC accuracy assessment over Northern Eurasia

remote sensing

Article

Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia

Dmitry Plotnikov *⁽⁰⁾, Pavel Kolbudaev, Alexey Matveev, Andrey Proshin and Ivan Polyanskiy

Space Research Institute of Russian Academy of Sciences, 117997 Moscow, Russia * Correspondence: dmitplot@d902.iki.rssi.ru; Tel.: +7-333-53-13

Abstract: Atmospheric correction of satellite remote sensing data is a prerequisite for a large variety of applications, including time series analysis and quantitative assessment of the Earth's vegetation cover. It was earlier reported that an atmospherically corrected KMSS-M (Meteor-M #2) dataset was produced for Russia and neighboring countries. The methodology adopted for atmospheric correction was based on localized histogram matching of target KMSS-M and MODIS reference gap-free and date-matching imagery. In this paper, we further advanced the methodology and quantitatively assessed Level-2 surface reflectance analysis-ready datasets, operatively produced for KMSS-2 instruments over continental scales. Quantitative assessment was based on accuracy, precision, and uncertainty (APU) metrics produced for red and near-infrared bands of the KMSS-2 instrument based on a reference derived from a MODIS MOD09 reconstructed surface reflectance. We compared error distributions at 5%, 20%, and 50% levels of cloudiness and indicated that the cloudiness factor has little impact on the robustness of the atmospheric correction regardless of the band. Finally, the spatial and temporal gradients of accuracy metrics were investigated over northern Eurasia and across different seasons. It was found that for the vast majority of observations, accuracy falls within the -0.010-0.035 range, while precision and uncertainty were below 0.06 for any band. With the successful launch of the most recent Meteor-M #2.3 with a new KMSS-2 instrument onboard, the efficiency and interoperability of the constellation are expected to increase.

MDP

Plotnikov D.E., Kolbudaev P.A., Matveev A.M., Proshin A.A., Polyanskiy I.V. Accuracy Assessment of Atmospheric Correction of KMSS-2 Meteor-M #2.2 Data over Northern Eurasia // Remote sensing. 2023. Vol. 15. Issue 18. P. 4395. DOI: doi.org/10.3390/rs15184395.

Becobas интерполяция LOWESS для скорректированных измерений

Plotnikov D.E., Loupian E.A., Kolbudaev P.A., Proshin A.A., Matveev A.M. Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems // IEEE Xplore. VIII International Conference on Information Technology and Nanotechnology. (ITNT). 2022. DOI: 10.1109/ITNT55410.2022.9848630.

Восстановленный NDVI по данным различных систем на 1 мая 2020 года

KMSS daily gap-free images and scatterplots

Пример ежедневного безоблачного изображения КМСС за 1 июля 2022

http://pro-vega.ru

Пример ежедневного безоблачного изображения КМСС на территорию РФ

Временные серии восстановленных значений NDVI по данным КМСС и MODIS

Количественное и качественное совпадение динамики NDVI для различных групг культур позволяет использовать восстановленные временные серии для мониторинга быстроменяющихся классов растительного покрова Автоматическое формирование тематических продуктов для сельскохозяйственного мониторинга на основе ежедневных безоблачных данных КМСС уровня L2A

Автоматическое распознавание используемой пашни по данным КМСС-М с разрешением 60 метров Разновременной синтез ежедневных безоблачных мультиспектральных изображений КСЯ по данным КМСС-М уровня L2A

Автоматическая сегментация для распознавания сельскохозяйственных культур

Текущая цель проекта РНФ

 создание базы данных на основе мета-анализа и in situ данных и инверсия модели переноса излучения PROSAIL на базе методов машинного обучения с целью дистанционной оценки LAI на основе разноугловых измерений КМСС

Leaf Area Index

Leaf Area Index

The leaf area index (LAI) is measured in square metres of leaf area per square metre of ground. LAI is an important measure in plant ecology, indicating quantity of foliage and how much photosynthesis is taking place. In addition, LAI can also help determine how much water will be stored and released by an ecosystem.

-Source: Nasa Earth Observation

Leaf Area Index

LAI является фундаментальной характеристикой растительности и важнейшей климатической переменной (Essential Climate Variable, ECV – то есть переменной, которая критически важна для описания земного климата)

Leaf Area Index относится к 55 ECV согласно WMO и Global climate observing system

Essential Climate Variables

Актуальные методы оценки LAI и продукты

Products	Version	Sensor	Spatial resolution	Temporal resolution	Algorithms	LAI T/E	References
CYCLOPES	V3.1	SPOT/VEGETATION	1/112°	10-day (1997–2007)	NN (red, NIR, SWIR, and SZA)	Т	<u>Baret et al. (2007)</u>
EUMETSAT Polar System	V1	MetOp/AVHRR	1.1 km	10-day (2015–)	Gaussian process regression	Т	<u>García-Haro et al. (2018)</u>
GA-TIP	V1	SPOT/VEGETATION and EnviSAT/MERIS	1 km	8-day (2002–2011)	Data assimilation retrieval from albedo (GlobAlbedo)	E	Disney et al. (2016)
GEOV2	V2	SPOT/VEGETATION, MODIS	1/112°	10-day (1999–)	NN (red, NIR, SWIR, and SZA)	т	<u>Baret et al. (2013)</u>
GLASS	V3	SPOT/VEGETATION, MODIS	1 km	8-day (2000–)	NN (red and NIR)	т	<u>Xiao et al. (2014)</u>
GLOBCARBON	V2	SPOT/VEGETATION, ENVISAT/ATSR	1 km	Monthly (1998–2006)	Empirical VI-LAI relationship	т	<u>Deng et al. (2006)</u>
GLOBMAP	V2	MODIS	500 m	8-day (2000–)	Empirical VI-LAI relationship	т	Liu, Liu, et al. (2012)
JRC-TIP	V1	MODIS	0.01°	16-day (2000–)	Data assimilation retrieval from albedo (MODIS)	E	<u>Pinty et al. (2011)</u>
MERIS	V1	EnviSAT/MERIS	300 m	10-day (2003–2011)	NN (13 bands, observation geometry, and atmosphere characteristics)	т	<u>Tum et al. (2016)</u>
MISR	V2	MISR	1.1 km	Daily (2000–)	LUT (red and NIR)	т	<u>Diner et al. (2008)</u>
MODIS	C6	MODIS	500 m	4-day (2000–)	LUT (red and NIR)	т	Huang et al. (2008)
PROBA-V	V1	PROBA-V	300 m	10-day (2014–)	NN (blue, red, NIR, and observation geometry)	Т	<u>Baret et al. (2016)</u>
University of Toronto (UofT)	V2	MODIS, MISR	250 m	10-day (2003)	Empirical VI-LAI relationship	т	Gonsamo and Chen (2014)
VIIRS	V1	SNPP/VIIRS	500 m	8-day (2012–)	LUT (red and NIR)	т	<u>K. Yan et al. (2018)</u>

- Эмпирические соотношения VI-LAI
- LUT и методы оптимизации
- Инверсия RT-модели с помощью NN

Полевые работы

- Точечные (1м х 1м) приборные наземные измерения с многократной в течение сезона повторяемостью: LAI\FAPAR, время измерения, высота растений, условия освещения (прямое солнце или рассеянный свет);
- Точки замеров располагались на трансекте поля общей длиной до 500 метров с шагом между точками 30-40 метров;

Септометр Accupar LP-80

Измерения с выносным сенсором

Схема измерений нижним сенсором для широких междурядий

Figure 10: Scenario 1: The two ends of the AccuPAR probe are in the middle of each row, getting a good representative sample of the entire area below and between rows.

Предлагаемая схема для междурядий менее 90 см

Figure 11: Scenario 2: The base of the probe is in the center of the row, while the end is in the center of the open space between rows. When sampling the next row, the same orientation is maintained, giving an accurate representation of the overall area.

Предлагаемая схема для междурядий более 90 см

Пропашные культуры: наша схема

Для пропашных культур (подсолнечник, кукуруза) использовалась схема эксперимента с 4 положениями септометра: 2 «крест-накрест», «вдоль» и «поперёк».

В каждом положении – по 5 замеров LAI \ FPAR, всего 20 замеров с последующим осреднением

Измерение LAI для пропашных культур

Зерновые культуры

Для зерновых культур (ячмень, пшеница) использовалась только схема «крест-накрест»

В каждом положении – по 5 замеров LAI \ FPAR, всего 10 замеров с последующим осреднением

Расположение тестовых полей

Результаты полевых работ

- Обследовано 5 полей с 4 культурами (подсолнечник (2 гибрида), кукуруза, ячмень, тв.пшеница);
- Собрана информация о биологической и бункерной урожайности культур, норма высева, даты сева и уборки, шаг междурядий
- Всего собрано 418 комплектов измерений за почти 4 недели обследований с интервалом между обследованиями 3-4 дня

Общее распределение наземных измерений

Интегральное распределение Измерения в условиях рассеянного солнечного света

Измерения в условиях прямого солнечного света

PROSPECT-D + SAIL

Распределения входных параметров

Параметр	Единицы	Описание	Диапазон	Пороги квантования	Число классов	Закон распределения
N	безразмерный	Структурный параметр листа (мезофилл)	1.2-2.2	1.53, 1.86	3	Гаусс
Cab	мг/см2	Концентрация хлорофилла а+b	20-90	37.5, 55, 72.5	4	Гаусс
Car	мг/см2	Концентрация коратеноидов	0-20	5, 10, 15	4	Гаусс
Cbrown	безразмерный	Доля коричневого пигмента (веток, стволов и т.д)	0-2	0.66, 1.32	3	Гаусс
Cw	г/см2	Эквивалентная толщина воды	0.6-0.85	0.6625, 0.725, 0.7875	4	Гаусс
Cm	г/см2	Содержания сухой массы	0.003-0.011	0.005, 0.007, 0.009	4	Гаусс
ant	мг/см2	Концентрация антоцианов	0-8	2, 4, 6	4	Гаусс
LAI	безразмерный (м2/м2)	Leaf Area Index	0-15	2.5, 5, 7.5, 10, 12.5	6	Гаусс
lidfa	градусы	Параметр углового распределения листьев	30-80	47, 63	3	Гаусс
hspot	безразмерный	Хотспот-параметр (зеркального отражения)	0.1-0.5	0.5	1	Гаусс
rsoil	безразмерный	Коэффицент панхроматической яркости почв	0.5-3.5	1.25, 2, 2.75	4	Равномерное
psoil	безразмерный	Коэффицент относительной влажности почвы	0.1-0.9	0.3, 0.5, 0.7	4	Специальное

Дополнительными параметрами модели SAIL является геометрия освещения и наблюдения: тройка углов **θ**_s,**θ**_v,**φ** – зенитный угол Солнца, зенитный угол наблюдения и фазовый (относительный азимутальный) угол

Спектры почв – база данных ASTER (нужна переработка)

Геометрические параметры съёмки КМСС: ViewZenith, SunZenith, RelativeAzimuth

KMSS-2: Red band

Синтетическая база данных

- Для создания обучающей базы данных (выборки) использовалась схема полного ортогонального эксперимента
- Число записей в консервативном случае (одна запись на одно уникальное сочетание классов) соответствует произведению классов, т.е. 663553

Архитектура нейросети

Обучение производилось для КМСС-2 (без параллакса) с входными параметрами: ViewZen, SunZen, RelAzimuth, Red, NIR

Обучение нейросети: гипотетическая точность определения LAI

Оценка оптимального объема обучающей выборки (максимальной мощности БД)

Дальнейшее увеличение объема выборки за пределы однократной полной ортогональной схемы эксперимента (~10⁵ элементов) представляется малоэффективным

Выводы

- Собрана база данных полевых обследований культур и измерений LAI, охватывающая месячный период точечных наблюдений фенологии ряда ключевых с\х культур;
- Построены распределения геометрии наблюдений для приборов КМСС-М и КМСС-2 для обучения;
- Проведен мета-анализ и собрана информация для создания синтетической обучающей базы данных;
- Определена оптимальная архитектура нейросети для инверсии модели PROSAIL;
- Получена оценка оптимальной мощности обучающей выборки

Дальнейшие шаги

- Параметризация обучающей базы данных под данные КМСС-М (с параллаксом) и исследование эффективности разноугловых наблюдений
- Подключение зелёного канала КМСС
- Завершение обучения и создание LAI как стандартного продукта с дальнейшей валидацией
- Решение задач второго года Проекта

Спасибо за внимание!

Исследование выполнено в рамках проекта РНФ 23-27-00412 с использованием ресурсов ЦКП «ИКИ-Мониторинг»