XXI Международная конференция «Современные проблемы дистанционного зондирования Земли из космоса» 13 – 17 ноября 2023 г., г. Москва

Особенности переноса лазерного излучения в двухслойной облачности от лидаров спутникового базирования

Т.В. Русскова, В.А. Шишко, Н.В. Кан Институт оптики атмосферы им. В.Е. Зуева, г. Томск

Работа выполнена при поддержке РНФ (грант № 22-27-00719)

Состояние проблемы

• широкий спектр лидарных систем, разработанных для решения задач физики и оптик атмосферы, свидетельствует об их эффективности: по сравнению с пассивными оптическими и активными радиолокационными приборами лидарные системы обеспечивают существенно более точными данными без использования естественных источников света с большим пространственным разрешением

 перистые облака в настоящее время наименее изучены и, в то же время, являются наиболее часто встречаемой формой облачности; несмотря на большое количество инструментов, позволяющих проводить наблюдения за перистыми облаками, проблема интерпретации получаемых данных до сих пор стоит весьма остро

 известно, что лидарный сигнал претерпевает изменения, обусловленные взаимодействием излучения с рассеивающей средой; степень воздействия среды на эхо-сигнал зависит от условий его распространения: в оптически плотной среде сигнал рассеивается многократно

в большинстве своем для восстановления оптико-геометрических характеристик облаков применяемые схемы обращения опираются на решение уравнения лазерной локации в приближении однократного рассеяния. Однако если оптическая плотность зондируемого объекта превышает пороговое значение, которое по сути может варьироваться в зависимости от условий эксперимента, или индикатриса рассеивающей среды сильно вытянута в направлении рассеяния 'вперед', что характерно для перистых облаков, или наблюдения проводятся на значительном удалении от объекта, пренебрежение многократным рассеяния лазерного излучения может привести к неверной интерпретации данных измерений

Цель исследования: получить оценки доли многократного рассеяния в суммарном эхосигнале в зависимости от оптико-микроструктурных характеристик однослойной перистой и двухслойной облачности разных типов и оптико-геометрических параметров космического лидара

Численная модель MSLRS

Для моделирования переноса лидарного сигнала в облачной атмосфере с учетом многократного рассеяния разработана численная **модель MSLRS** (**M**ultiple **S**cattered Lidar Return Simulator); модель позволяет получать распределение по времени *t* суммарного эхо-сигнала и его компонентов, сформированных разными кратностями рассеяния

- рассматривается плоскопараллельная вертикально неоднородная среда
- предполагается моностатическая система
 оптического излучения
- нестационарное уравнение переноса решается методом Монте-Карло (алгоритмы простой и двойной локальной оценки)

 включена возможность получения аналитических оценок мощности светового сигнала в приближении однократного и двукратного рассеяния

Тестирование модели MSLRS

Численная модель протестирована с использованием данных международного проекта **MUSCLE** (**MU**Itiple **SC**attering Lidar Experiments)

- изотропная среда с рассеивающим облачным слоем С1 (Д. Дейрменджан) высотой 300 м
- оптическая толщина слоя 5.175
- спектральный канал 1.064 мкм
- длительность импульса 40 нс

 $Q(z) = P_{\geq 2}(z)/P_1(z), Q_2(z) = P_2(z)/P_1(z),$ где $P_i(z), i \geq 1$, – мощность лидарного сигнала, формируемого излучением, рассеянным *i* раз

1 – аналитическая модель DREV (L. Bissonnette et al.), 2 – аналитический способ с использованием теории Ми (C. Flesia et al.), 3 – полуаналитический подход (Э.П. Зеге и др.), 4 и 5 – метод Монте-Карло (D. Winker et al.) и (P. Bruscaglioni et al.) соответственно, 6 – метод Монте-Карло (MSLRS)

1. Слой сплошной перистой облачности

Слой перистых облаков толщиной 2 км располагается на высоте 9 км, их фазовое состояние является кристаллическим, а ориентация ледяных частиц в пространстве – хаотической; в расчетах использованы оптические характеристики, полученные методами как геометрической (GOM), так и физической (POM) оптики для монодисперсных и полидисперсных смесей частиц разных форм (см. таблицу далее)

2. Аэрозольно-молекулярная атмосфера

- модель атмосферы 0-100 км
- аэрозоль: определяется тремя типами смесей частиц модели OPAC (Optical Properties of Aerosols and Clouds) continental average (0-2 км), continental (2-12 км) и stratospheric (12-100 км)
- коэффициенты рассеяния излучения рэлеевскими частицами: метеомодель лета средних широт AFGL
- альбедо подстилающей поверхности: 0

2.1 Двухслойная облачность разных типов

- облачный слой верхнего яруса (9-11 км) перистая облачность, микроструктура кристаллов GHM-модель
- облачный слой нижнего яруса (2-2.2 км) жидкокапельная облачность, stratus continental (модель OPAC)

2.2 Двухслойная перистая облачность

- облачный слой верхнего яруса (9-11 км) перистая облачность, микроструктура кристаллов GHM-модель
- облачный слой нижнего яруса (7-8 км) перистая облачность, микроструктура кристаллов GHM-модель

Спектральный канал $\lambda = 0.532$ мкм

В качестве основного анализируемого параметра будем рассматривать интегральную характеристику q_i , %, представляющую собой вклад излучения i-ой кратности рассеяния $P_i(z)$ в суммарный эхо-сигнал P(z)

$$q_i(z) = 100\% \cdot \frac{P_i(z)}{P(z)}, i \ge 1$$

Модели микроструктуры перистых облаков, используемые в расчетах

Размеры ледяных частиц: эффективный диаметр $D_c = 10$ мкм и $D_c = 60$ мкм

			Учет распределения	Шероховатость
микроструктуры	Ооозначение	ренальные под	по размерам	поверхности
Частица произвольной формы*	ARB	POM	Нет	Нет
Столбики сплошные**	SCOL			
Столбики полые**	HCOL			
Пластинки**	PLT	FDTD, TM, IGOM, LMT	Нет	Нет
Дроксталлы**	DRX			
Розетки полые**	HROS			
Смесь частиц различных форм***	GHM	ADDA, TM, IGOM	Да	Да

Shishko V. et al. / EPJ Web Conferences, 2020

** Yang P. et al. / Appl. Opt., 2005

*** Baum B. et al. / J. Quant. Spectrosc. Radiant. Transfer, 2014

Индикатрисы однократного рассеяния для ледяных частиц разных форм с эффективным диаметром *D_c* = 10 мкм

Входные параметры численных экспериментов

Каждая из эксплуатируемых систем лидарного зондирования обладает уникальным диапазоном значений своих параметров. Также проектируются и вводятся в эксплуатацию новые космические лидары. В этой связи имитационное моделирование переноса лазерного излучения выполнено для широкого диапазона возможных значений так, чтобы охватить различные оптико-геометрические схемы зондирования

Значения базовых параметров космических лидаров, используемые при имитационном моделировании

Тип лидара по высотному расположению	Н, км	Δt , нс	2ү, мрад	2ф, мрад	<i>d_r</i> , см
Низкоорбитальный	400	5, 20, 30	0.05, 0.1, 0.5, 1, 1.5	0.05, 0.1, 0.5, 1, 1.5	60, 100, 300, 900
Среднеорбитальный	700	5, 20	0.1	0.1, 0.2, 0.5	100

- Δt длительность импульса, нс
- 2ψ расходимость источника излучения, мрад
- 2 ф угол поля зрения приемника излучения, мрад
- *d*_r световой диаметр приемного телескопа, см

Низкоорбитальный лидар (Н = 400 км)

Зависимость вкладов кратного рассеяния в лидарный сигнал от оптической толщины облаков и апертуры приемника; 2_ψ = 0.1 мрад, *D*_{*c*} = 10 мкм, *H* = 400 км

		$\tau = 0.25$			$\tau = 0.5$			τ = 1		τ = 2			
2ф, мрад	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	
0.05	91.1	8.1	0.8	83.4	14.9	1.7	72.1	22.3	5.6	59.4	26.6	14.0	
0.1	91.8	7.6	0.6	84.6	13.8	1.6	73.9	20.9	5.2	62.5	25.7	11.8	
0.5	86.9	12.0	1.1	76.6	19.9	3.5	61.4	27.5	11.1	46.3	29.5	24.2	
1	85.0	13.5	1.5	73.5	21.9	4.6	56.8	29.0	14.2	40.4	29.3	30.3	
1.5	83.7	14.4	1.9	71.5	23.1	5.4	54.0	30.0	16.0	36.9	28.6	34.5	

Зависимость вкладов кратного рассеяния в лидарный сигнал от оптической толщины облаков и апертуры приемника; 2 ψ = 0.1 мрад, *D*_{*c*} = 60 мкм, *H* = 400 км

		$\tau = 0.25$			$\tau = 0.5$			$\tau = 1$		τ = 2			
2ф, мрад	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	
0.05	92.1	7.6	0.3	86.4	12.6	1.0	76.2	18.4	5.4	66.1	23.3	10.6	
0.1	90.7	8.6	0.7	84.6	14.1	1.3	67.4	19.6	13.0	59.5	24.6	15.9	
0.5	87.8	11.0	1.2	80.0	17.5	2.5	61.1	23.5	15.4	49.7	27.9	22.4	
1	86.2	12.4	1.4	76.7	19.5	3.8	57.2	25.4	17.4	43.0	27.7	29.3	
1.5	85.0	13.3	1.7	74.8	20.7	4.5	54.8	26.4	18.8	39.5	27.3	33.2	

Среднеорбитальный лидар (Н = 700 км)

Зависимость вкладов кратного рассеяния в лидарный сигнал от оптической толщины облаков и апертуры приемника; 2 ψ = 0.1 мрад, *D*_{*c*} = 10 мкм, *H* = 700 км

		$\tau = 0.25$			$\tau = 0.5$			$\tau = 1$		τ = 2			
2ф, мрад	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	
0.05	90.0	9.0	1.0	81.1	16.5	2.4	67.7	24.0	8.3	54.5	27.6	17.9	
0.1	90.2	9.0	0.8	82.2	16.7	2.1	70.1	23.1	6.8	57.6	27.2	15.2	
0.5	85.4	13.2	1.4	74.4	21.5	4.4	57.7	28.8	13.5	41.4	29.4	29.2	
1	83.2	14.8	2.0	70.6	23.5	5.9	52.7	30.0	17.3	35.6	28.3	36.1	

Зависимость вкладов кратного рассеяния в лидарный сигнал от оптической толщины облаков и апертуры приемника; 2 ψ = 0.1 мрад, *D*_{*c*} = 60 мкм, *H* = 700 км

		τ = 0.25			$\tau = 0.5$			$\tau = 1$		$\tau = 2$			
2ф, мрад	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	q ₁ , %	q ₂ , %	q _{>2} , %	
0.05	91.1	8.4	0.5	83.8	14.1	2.1	71.9	21.1	7.0	61.2	24.5	14.3	
0.1	90.7	8.6	0.7	83.5	14.8	1.7	70.1	21.0	8.9	59.3	26.0	14.7	
0.5	87.3	11.6	1.1	74.6	18.1	7.3	57.9	26.7	15.4	44.4	27.5	28.2	
1	85.3	13.2	1.5	71.6	20.0	8.4	53.6	28.2	18.2	37.3	26.2	36.5	

Результаты моделирования: влияние формы и размера кристаллов

Таблица демонстрирует как форма и размер ледяных кристаллов влияет на величину вклада многократного рассеяния в обратный эхо-сигнал. Численные эксперименты проведены как для низкоорбитального, так и среднеорбитального лидара. В таблице приведены значения *q*_{>1}, %, при оптической толщине облачности 0.5

Таблица. Вклад многократного рассеяния в суммарный эхо-сигнал (*q*_{>1}, %) в зависимости от модели ледяных частиц и апертуры приемника; 2 ψ = 0.1 мрад

<i>Н</i> , км	2ф, мрад			D	$_{c} = 10 \text{ mm}$	KM		$D_c = 60 \text{ MKM}$								
		GHM	DRX	PLT	SCOL	HCOL	HROS	ARB	GHM	DRX	PLT	SCOL	HCOL	HROS	ARB	
400	0.05	16.6	15.4	15.4	18.6	18.7	18.2	12.3	13.6	19.9	19.7	22.1	15.2	12.5	13.2	
	0.1	15.4	13.3	13.3	16.3	18.1	18.6	10.7	15.4	21.4	22.9	23.3	19.4	15.8	13.8	
	0.5	23.4	22.8	26	22.1	26.2	24.3	18.8	19.9	23.3	23.6	23.8	22.3	18.9	18	
	1	26.5	25.6	26.3	22.8	29.8	27.6	21.3	23.3	25.2	23.7	24	24.5	21	20.1	
	0.05	18.9	18.3	25.3	20.6	21.3	19.8	15	14.9	22.7	20.1	21.4	17.6	13.6	13.5	
700	0.1	18.8	16.3	22.8	18.5	20.7	20.3	13.2	16.5	20.8	23.2	22.5	21.5	17.4	14.9	
/00	0.5	25.9	25.1	26.3	22.7	29.7	27	20.8	22.4	24.8	23.7	23.8	25.4	21.5	19.5	
	1	29.4	28.4	26.8	23.5	33.7	30.9	23.5	26.1	27.6	23.8	24.2	28.2	24.3	21.8	

 влияние формы ледяных частиц на вклад q_{>1} для разных случаев расположения космического лидара идентично и отличается лишь величиной этого вклада

• для одних форм частиц наблюдается более высокий фон многократного рассеяния, а для других – более низкий

■ наиболее низкие значения *q*_{>1} имеют место для частиц произвольной формы, а также крупных полых розеток.

 наиболее слабая зависимость вклада многократного рассеяния от угла поля зрения приемника наблюдается при использовании сплошных столбиков и крупных пластинок, при этом локальный минимум *q*_{>1} наблюдается при равных значениях φ и ψ для всех видов мелких частиц

• сравнительно низкий вклад в многократное рассеяние вносят мелкие дроксталлы, пластинки, а также GHM-смесь при угле поля зрения приемника до 0.1 мрад

 при углах поля зрения 0.5 и 1 мрад практически все формы мелких частиц обеспечивают величину вклада многократного рассеяния более 20%

Результаты моделирования: двухслойная облачность разных типов

Нижняя граница перистого облака (верхний ярус) толщиной 2 км находится на высоте 9 км, а слой жидкокапельных облаков толщиной 0.2 км — на высоте 2 км. Анализируется изменение структуры эхосигнала разной кратности в пределах перистой и жидкокапельной облачности в зависимости от их оптической толщины при зондировании атмосферы низкоорбитальным лидаром.

 как только луч света входит в облачность, сигнал формируется преимущественно засчет однократно рассеянного излучения; по мере погружения излучения в облако происходит нарастание эффектов многократного рассеяния

 выраженный спад заднего фронта импульса сдвинут относительно нижней границы облачности примерно на 50 м

перистой • C появлением облачности оптической плотности *т*_в = 2 наблюдается резкий спад доли однократно и рост доли многократно рассеянного излучения, отраженного OT жидкокапельного облака; пиковая мощность, имевшая место В первом случае, падает многократно

временная структура сигнала, представленного по кратностям взаимодействия в зависимости от оптической толщины облачных слоев: (а) $\tau_{\rm H}$ = 5, (б) $\tau_{\rm B}$ = 2, $\tau_{\rm H}$ = 5, (в) $\tau_{\rm B}$ = 2, $\tau_{\rm H}$ = 2, (г) $\tau_{\rm B}$ = 1, $\tau_{\rm H}$ = 2

Результаты моделирования: двухслойная перистая облачность

Примером двухслойной перистой облачности может служить перисто-слоистая облачность (Cirrostratus dublicatus – Cs du). Такие облака расположены слоями друг над другом на слегка разных уровнях. Расположим второй слой перистого облака толщиной 1 км на высоте 7 км с аналогичными оптическими свойствами и исследуем распределения вкладов *q_i* в обоих слоях.

Зависимость вкладов кратного рассеяния от оптической толщины облаков верхнего ($\tau_{\rm B}$) и нижнего ($\tau_{\rm H}$) ярусов; 2 ψ = 2 ϕ = 0.1 мрад, D_c = 10 мкм, H = 700 км, GHM-модель кристаллов

	$\tau_{\scriptscriptstyle B} = 0.25$							$\tau_{_{ m B}}=0.5$					$ au_{_{\mathrm{B}}} = 1$					
$ au_{_{ m H}}$	<i>q</i> _{1-в} ,	<i>q</i> _{1-н} ,	<i>q</i> _{2-в} ,	<i>q</i> _{2-н} ,	<i>q</i> _{>2-}	<i>q</i> _{>2-}	<i>q</i> _{1-в} ,	<i>q</i> _{1-н} ,	<i>q</i> _{2-в} ,	<i>q</i> _{2-н} ,	$q_{>2-}$	<i>q</i> _{>2-}	<i>q</i> _{1-в} ,	<i>q</i> _{1-н} ,	<i>q</i> _{2-в} ,	<i>q</i> _{2-н} ,	$q_{>2-}$	<i>q</i> _{>2-}
	%	%	%	%	в, %	, %	%	%	%	%	в, %	, %	%	%	%	%	в, %	, %
0.25		80.5		16.6		2.9		70.9		22.0		7.1		55.0		27.9		17.1
0.5	91.0	72.4	8.3	21.5	0.7	6.1	83.5	63.5	14.0	25.4	2.5	11.1	71.5	48.7	20.6	28.9	7.5	22.5
1		60.1		26.4		13.5		52.6		28.5		18.9		41.3		30.6		28.1

При зондировании двухслойной перистой облачности – облако верхнего яруса обусловливает более низкие значения вкладов однократного рассеяния в пределах нижележащего облака и возрастание роли кратностей высокого порядка в отраженном сигнале. С увеличением оптической толщины $\tau_{\rm B}$ от 0.5 до 1 вклад однократного рассеяния $q_{1-\rm H}$ изменяется от 80.5 до 55% при оптической толщине облака нижнего яруса 0.25. При $\tau_{\rm H} = 1 q_{1-\rm H}$ уменьшается от 60.1 до 41.3%. При этом наличие нижележащего облачного слоя не оказывает никакого воздействия на значения $q_{i-\rm B}$.

Результаты моделирования: двухслойная перистая облачность

Численный эксперимент, имитирующий зондирование двухъярусной перистой облачности

• при облачности появлении верхнего яруса начинается перераспределение мощности излучения с разной кратностью взаимодействия: доля однократно рассеянного излучения в суммарном сигнале снижается, а многократного роль рассеяния возрастает, начиная С минимальных оптических глубин

• отмечается четкость спада лидарного импульса ровно ПО крайним кромкам перистых облаков как нижнего, так И верхнего ярусов

отраженный сигнал P(z) с разделением по кратностям взаимодействия в зависимости от оптической толщины облачного слоя верхнего и нижнего яруса: (а) $\tau_{\rm H}$ = 0.5, (б) $\tau_{\rm B}$ = 0.25, $\tau_{\rm H}$ = 0.5, (в) $\tau_{\rm B}$ = 0.5, $\tau_{\rm H}$ = 1, (г) $\tau_{\rm B}$ = 1, $\tau_{\rm H}$ = 1