ПРИМЕНЕНИЕ ПРОГРАММЫ «QAVIS» ДЛЯ ДИСТАНЦИОННОГО МОНИТОРИНГА МОРСКИХ ПРОЦЕССОВ В ПРИБРЕЖНЫХ ЗОНАХ ОКЕАНА НА ОСНОВЕ АНАЛИЗА ВИДЕОТРАНСЛЯЦИЙ В СЕТИ ИНТЕРНЕТ

Фищенко В.К., Гончарова А.А., Зимин П.С.. Голик А.В, ТОИ ДВО РАН

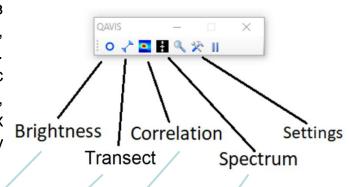
<u>fischenko@poi.dvo.ru</u>

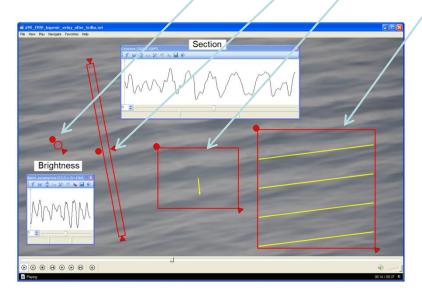
Введение

В ТОИ ДВО РАН разработана и применяется в исследованиях программа оперативного анализа изображений и видео QAVIS (Quick Analysis of Video and Images for Scientists) [https://oias.poi.dvo.ru/qavis/].

В частности, она применялась для анализа данных системы видеомониторинга залива Петра Великого. При этом были разработаны и использовались несколько очень простых методик оценивания сигналов поверхностного волнения и колебаний уровня моря на основе анализа в режиме реального времени видеотрансляций с 8 надводных и 3 подводных IP-камер, установленных в заливе.

Вместе с тем, в последние годы в Интернете появляется все больше видеотрансляций с IP-камер, установленных кем-либо в прибрежных зонах Мирового океана. Это дает возможность заинтересованным специалистам с применениям этих же и разработанных самостоятельно методик с помощью QAVIS дистанционно исследовать морские процессы, протекающие в местах установки камер.


В докладе будут рассмотрены несколько примеров такого применения QAVIS в задачах дистанционного мониторинга морских процессов в прибрежных зонах.


O QAVIS ПОДРОБНЕЕ

Программа предоставляет пользователю набор инструментов для анализа пространственных или временных закономерностей в изображениях и видео, наблюдаемых на экране компьютера. Пользователь выбирает необходимые инструменты небольшого начального окна (Яркость, Сечение, Корреляция, Спектр) и устанавливает их селекторы в нужные места экрана. Программа с заданной частотой (от 1 до 32 Гц) считывает с изображения экрана ПОД селекторами, анализирует отображает результаты анализа в небольших информационных окнах, а также сохраняет в файлы. Продемонстрируем работу инструментов. На видео морской сцены волны идут сверху вниз.

- 1. Инструмент «Яркость» измеряет сигнал изменения средней яркости внутри круглого селектора b(t). Последний несет информацию о частотной структуре сигнала волнения h(t)
- 2. «Сечение» измеряет распределение яркости изображения вдоль линейного селектора сигнал b(r). Его можно рассматривать как оценку соответствующего сечения волнового поля h(r).
- 3. «Корреляция» вычисляет и отображает функцию взаимной корреляции K(x,y) между парами видеокадров под прямоугольным селектором. Используется для оценки сигнала волнения h(t) либо скорости движения волн v(t).
- 4. «Спектр» вычисляет и отображает двумерный спектр Фурье В(wx,wy) изображения под прямоугольным селектором. Его можно рассматривать как оценку двумерного волнового спектра H(wx,wy).

Начальное окно QAVIS

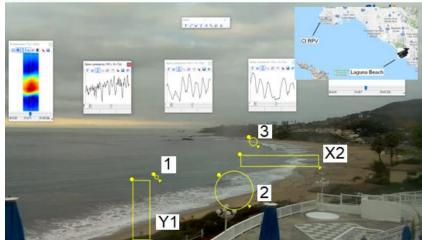
Correlation

Spectrum

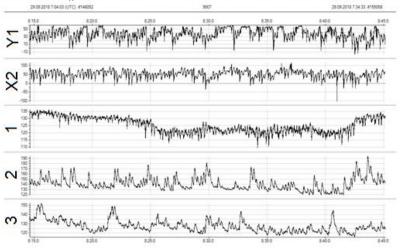
Примеры регистрации волновых процессов в прибрежных зонах

США, пляж Лагуна Бич

MEASUREMENTS (ESTIMATION) OF WAVES IN COASTAL AREAS

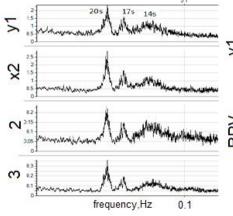

USA, near Los Angeles, Laguna Beach, 2018

https://www.skylinewebcams.com/en/webcam/united-states/california/laguna-beach/laguna-beach.html

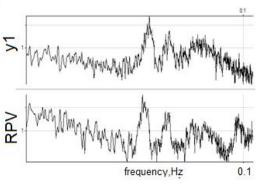

2 correlation markers register the motion of the breaking wave,

2 round markers register the brightness in the places where the waves break, 1 marker registers the brightness of the sea surface modulated by the slopes

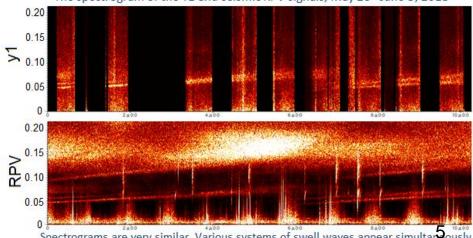
of the waves



Typical oscillograms of all five signals, September 29, 2018, 07:04 - 07:34


Spectra of 9-hour QAVIS signals

May 26, 2018, 4 signals are used, the last two are the brightness of the sea surface. In all spectra, three components of the swell are clearly visible: 20s. 17s. 14s


Spectra of Y1 and seismic RPV signals

The spectrum of the RPV shows three peaks very similar to the peaks in video-signal Y1. This is the so-called primary microseisms, they are caused by the swell waves coming ashore near the station.

Comparison of video-surveillance data with data and coastal seismic station CI RPV (distance 60 km)

The spectrogram of the Y1 and seismic RPV signals, May 26 - June 5, 2018

Spectrograms are very similar. Various systems of swell waves appear simultaneously in them, their dispersion is clearly observed (linear increase in frequency with time)

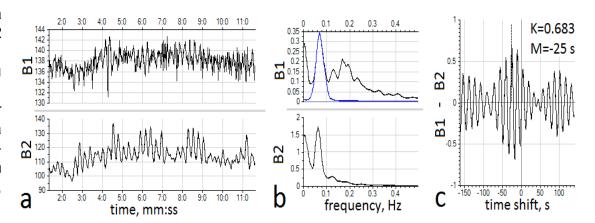
Более масштабное исследование

34-суточный непрерывный дистанционный мониторинг процессов выхода волн океанической зыби на Тихоокеанское побережье Северной и Центральной Америк

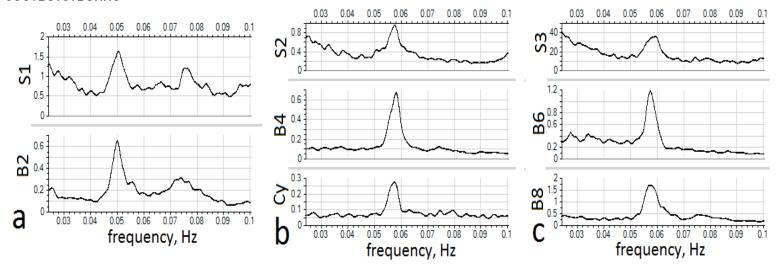
(NB. Исследование, выполненное на 1 стандартном ПК)

I. Мониторинг волновых процессов в прибрежных зонах Мирового океана

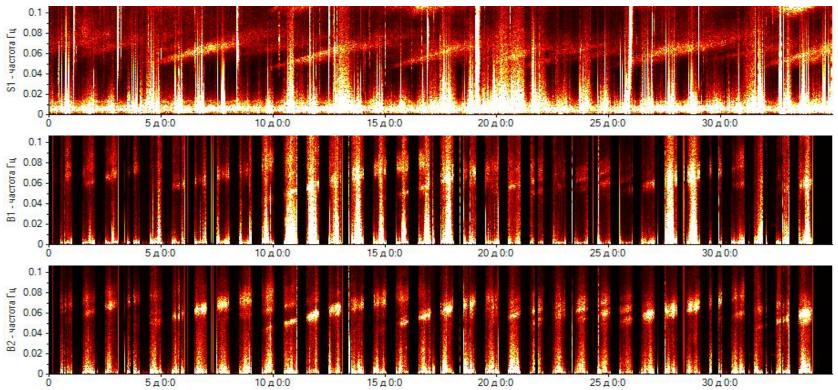
Пример: 34-суточный мониторинг процессов выхода волн океанической зыби на побережье Северной и Центральной Америк


На экран одного из компьютеров отдела 8 выведены три Интернет-трансляции, из США, Мексики и Коста-Рики. На них установлены QAVIS-измерители волнения: 9 - на Тихоокеанском побережье, 1 - на Атлантическом (Карибское море). Частота дискретизации сигналов 2 Гц. Длительность измерений — 34 суток. Для валидации результатов привлекаются синхронные записи сейсмических сигналов с ближайших к точкам видеонаблюдения сейсмостанций.

Об особенностях яркостных методов оценки сигнала волнения

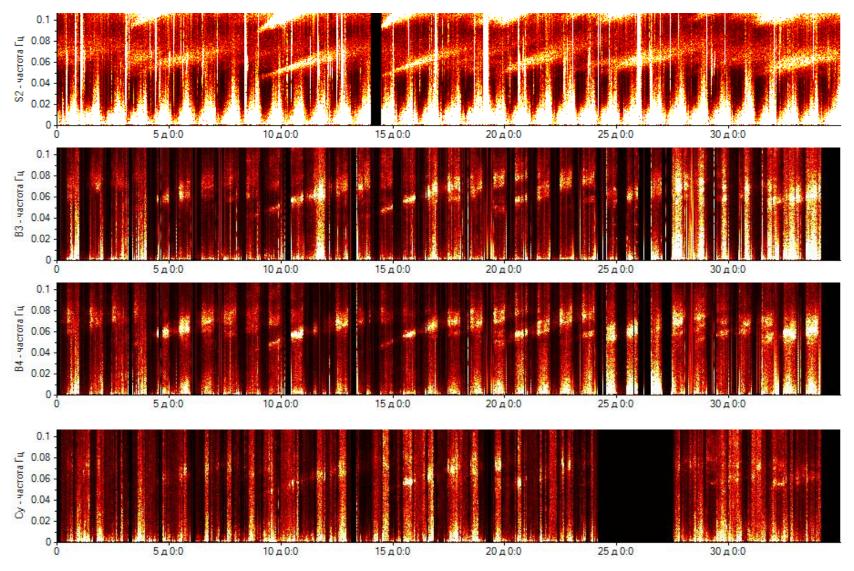

Анализ 10-минутного фрагмента сигналов В1 (наклоны волн) и В2 (обрушения волн): осциллограммы, спектры, взаимные корреляции компонент зыби

Результат: Оба метода регистрируют 15-секундную зыбь. Первая методика дополнительно регистрирует 6-секундные ветровые волны. Она более «высокочастотная». Однако, менее стабильная.

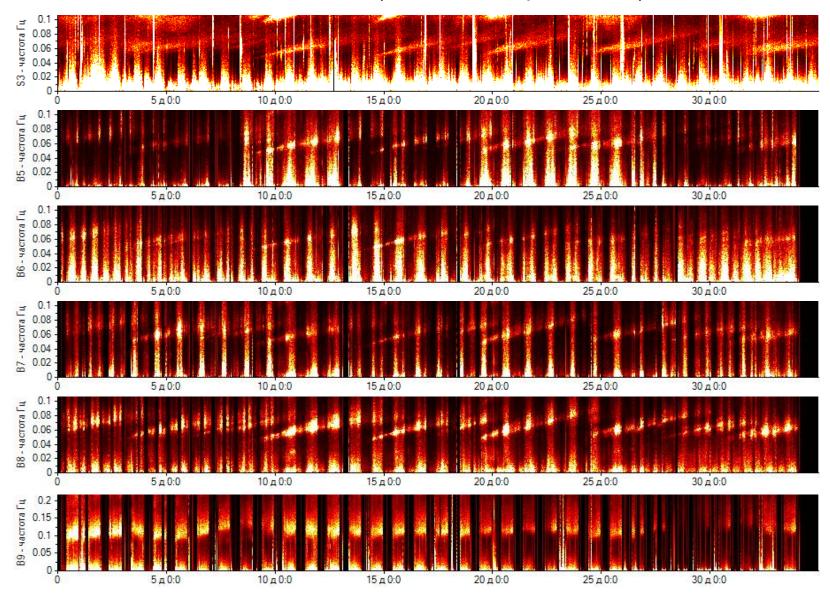

Сравнение спектров волнения сейсмических и QAVIS-сигналов

Используются сигналы S1, S2, S3 ближайших сейсмических станций: США – CI RPV, 60 км; Мексика – MX TLIG, 320 км; Коста-Рика – OV LAFE (25, 38, 210 км). На рисунках показаны синхронные спектры 5-часовых сейсмических сигналов и сигналов QAVIS во всех трех точках (21 марта 2020 г.). В каждой точке в спектрах сейсмического и QAVIS сигнала синхронно проявляются пики волнения зыби с периодами 20 с, 17 с и 17 с, соответственно

34-дневные спектрограммы первичных микросейсм и QAVIS оценок сигналов волнения

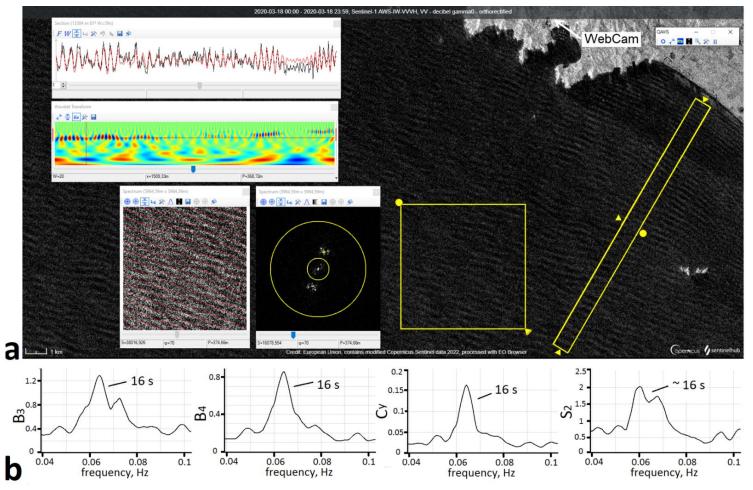

Точка 1. США, Лос Анджелес

На всех спектрограммах видны синхронные наклонные треки длительностью 4-5 суток. Это проявления волн зыби, порожденных штормами в Тихом океане за тысячи километров от мест наблюдения. Наклон частотных треков обусловлен дисперсией волновых пакетов на длинном пути к побережью, периоды волн постепенно уменьшаются от 22-24 сек до 11-12. Все треки измеренных по видео волн зыби в точности воспроизводятся на спектрограмме сейсмического сигнала в форме т.н. первичных микросейсмов. Это доказывает корректность «видеоизмерений».


9

Точка 2. Мексика, Сиуатанехо Примечание: сигнал Су – вертикальные смещения лодок в заливе

Выводы. Те же, что и для точки 1. Спектрограмма движений лодок более прерывиста, потому от лодки часто выходили из поля анализа и приходилось устанавливать новые объекты трекинга.


Точка 3. Коста-Рика (Жако, Калдера, Лимон)

Выводы по первым пяти спектрограммам те же. Последняя спектрограмм принципиально отличается. Потому что измерения велись уже на Атлантическом побережье (порт Лимон)

Сравнение с данными спутниковых наблюдений

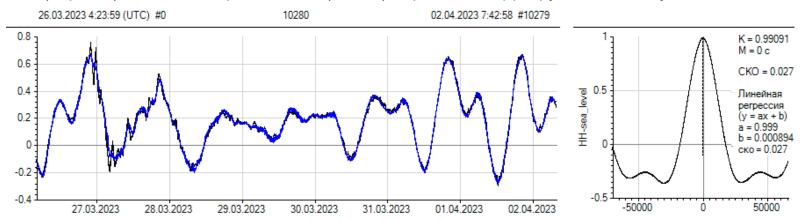
На сайте EOportal было найдено SAR-изображение вблизи Сиутанехо (Sentinel-1, 2020-03-18 23:59)

На SAR изображении моря вблизи камеры в Мексике (рис.а) просматривается волновая структура, возможно, это гравитационные волны зыби. Проверяем это предположение. Измеряем с помощью QAVIS среднюю длину волн - 370 м. Если это гравитационные волны, то их период согласно дисперсионному соотношению должен быть равен 16 сек. Проверяем. В записях сигналов волнения выбираем часовые фрагменты, синхронизированные с моментом регистрации спутникового снимка. В спектрах всех сигналов, включая сейсмический, виден пик с периодом 16 сек (рис. b). Значит предположение верно, на SAR снимке наблюдаются гравитационные волны зыби с периодом 16 сек.

Примеры регистрации колебаний уровня моря в прибрежных зонах

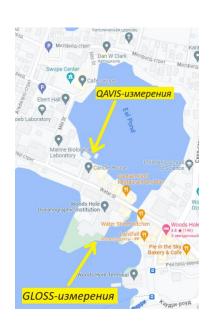
Основная идея – отслеживание вертикальных движений маркеров на поверхности воды с использованием инструмента Корреляция программы QAVIS

Пример 1: Интернет-трансляция из Венеции (Италия), QAVIS измеряет вертикальные движения лодок в канале


Полученные сигналы сравнивались с сигналами колебаний уровня моря на станции Ve19, входящей в Глобальную систему наблюдений уровня моря (GLOSS)

Расположение на карте Google точки проведения QAVIS-измерений (1) и точки установки GLOSS-станции Ve19 (2).

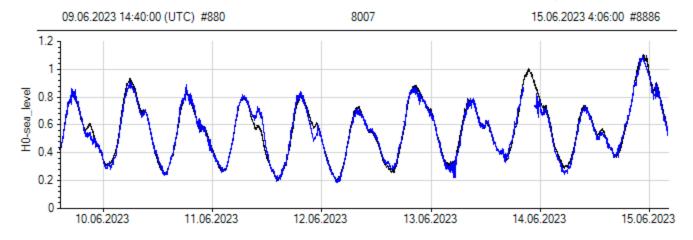
Расстояние между точками около 8 км, гидрологические условия очень разные: точка 1 в городе, точка 2 на выходе из Венецианского залива, практически в Адриатическом море

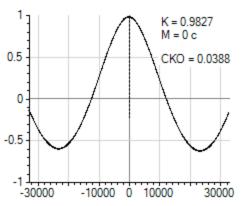

Осциллограммы 7-суточных записей сигналов колебаний уровня моря, измеренных на GLOSSстанции (черный) и на видеотрансляции (синий). Правее – корр. функция между сигналами

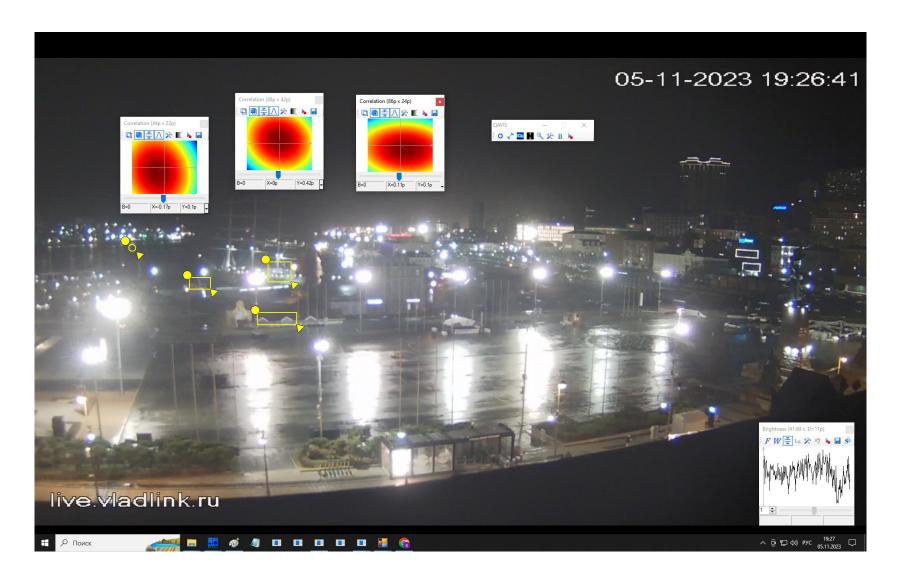
Визуально сигналы очень похожи, несмотря на расстояние 8 км и разные гидрологические условия, коэффициент корреляции K=0.99, среднеквадратичное отклонение между сигналами 2.7 см.

Примечание. В этом районе ведут активные исследования по отладке методик спутниковой альтиметрии в прибрежных зонах итальянские ученые. Один из руководителей работ Stefano Vign**ú** elli говорил, что им необходимы данные подспутниковых наблюдений уровня в разных точках побережья..

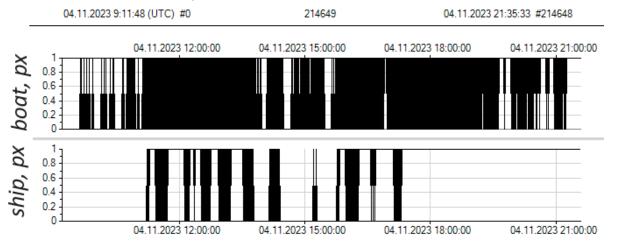
Пример 2. Измерение колебаний уровня моря в Вудсхоуле (США), сравнение с GLOSS-станцией Hole




Расстояние 300 м


MBL Eel Pond Live Stream

Осциллограммы 6-суточных сигналов: GLOSS(черный), QAVIS (синий), корреляция K=0.983

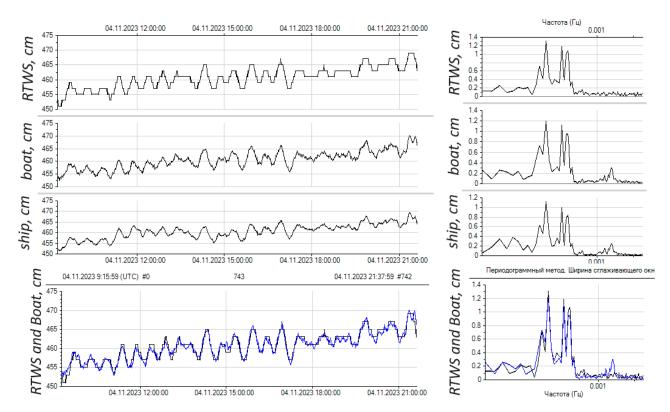


Пример 3. Измерение колебаний уровня моря в бухте Золотой Рог (применена процедура субпиксельного трекинга вертикальных движений двух морских судов на видеотрансляции с городской камеры Владивостока)

Анализ 12-часовых записи сигналов вертикальных движений «лодки» и «парусника», стоящих на морском причале (в пикселах)

Применена стандартная процедура корреляционного трекинга, разрешение - 1 пиксел

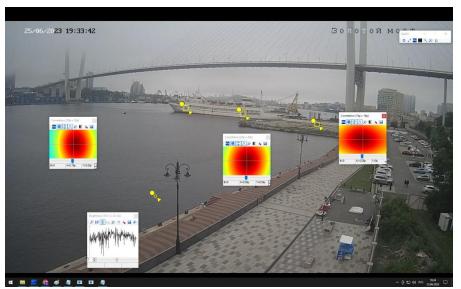
NB. Это очень плохие оценки сигнала колебаний уровня моря в б. Золотой Рог!!!
Применена процедура субпиксельного трекинга, разрешение 1/100 пиксела

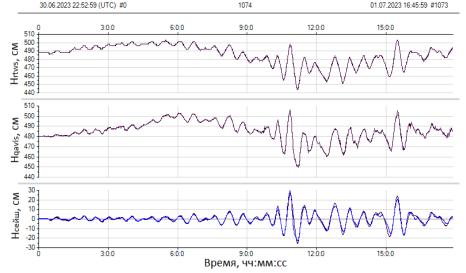

NB. Оценки колебаний уровня выглядят лучше, но хотелось бы их сравнить с чем-либо

Сравнение с данными уровневой станции Vlad Российской службы предупреждения о цунами (RTWS), расстояние 700 м от судов

Сигналы QAVIS приведены к частоте дискретизации 1 отс/мин, принятой в RTWS

Осциллограммы и спектры RTWS и QAVIS сигналов отдельно


Осциллограммы и спектры RTWS (черный) и QAVIS (синий) сигналов с наложением

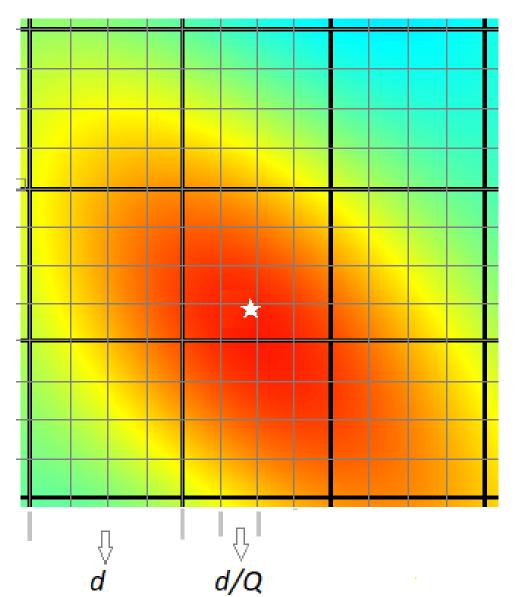


Результаты. Сигналы и спектры очень похожи. В спектрах синхронно видны пики периодичности сейш бухты Золотой Рог: 30, 33, 46 и 53 мин. В спектрах QAVIS сигналов дополнительно видна известная периодичность бухты 12 минут..

Таким образом, даже в таких «безнадежных» ситуациях (диапазон колебаний маркера всего 1 пиксель!) QAVIS измеряет сигнал колебания уровня моря с качеством, сопоставимым с качеством уровневых станций RTWS

Еще один эксперимент. Другая камера, день, маркеры на судне плоские (нет теней), 15 часов

Заключение


- Программа QAVIS позволяет дистанционно регистрировать волновые процессы и колебания уровня моря в прибрежных зонах Мирового океана на основе анализа в режиме реального времени Интернет-трансляций с прибрежных IP-камер
- 2. Сравнение с данными синхронных сейсмических, спутниковых и GLOSS / RTWS-наблюдений подтверждает достаточно высокое качество QAVIS-измерений
- 3. Программа компактна (700 КБ в архиве), проста в использовании, не требует предустановки дополнительных программ (Matlab, Pyton, etc.). Информация о программе и сама программа размещены на странице https://oias.poi.dvo.ru/qavis/

Благодарю за внимание

Приложение 1

О реализации процедуры субпиксельного корреляционного трекинга в программе QAVIS

Идея субпиксельного трекинга: интерполяция исходной сетки «однопиксельных» отсчетов к.ф. К(u,v) в Q раз более детальную

Пояснение

Цифровые изображения I(n,m) и T(n,m) получены дискретизацией с шагом d исходных непрерывных изображений I(x,y) и T(x,y) . К.ф. между последними K(u,v) тоже непрерывна. Положение ее максимума (U,V) (отмечено звездочкой) задает точное искомое смещение между кадрами I(x,y) и T(x,y).

Максимум (K,L) дискретной к.ф. K(k,l) находится в ближайшем к звездочке узле однопиксельной сетки. Ошибка оценки положения истинного максимума (U,V) находится в интервале [-d/2,d/2] по каждой координате.

Если K(k,l) интерполировать вблизи (K,L) в Q-раз более детальную «субпиксельную» сетку отчетов и искать максимум в ней, то ошибка оценивания (U,V) может уменьшиться в Q раз (в случае точной интерполяции).

О выборе алгоритмов интерполяции в субпиксельную сетку

Очевидно, что при фиксированной кратности интерполяции Q качество трекинга зависит от того, насколько точно применяемая процедура интерполяции (кусочно-постоянная, билинейная, бикубическая, сплайновая и т.д.) воспроизводит значения непрерывной «истинной» к.ф. *К(u,v)* в узлах субпиксельной сетки отсчетов.

Существуют условия, при справедливости которых возможно реализовать схему точной интерполяции к.ф. K(u,v).

Если предположить, что спектры исходных непрерывных изображений наблюдаемой камерой сцены I(x,y) и T(x,y) финитны (равны нулю всюду за пределами некоторой частоты Fmax), а шаг их пространственной дискретизации в цифровую форму d (размер пикселя) удовлетворяет условиям теоремы Котельникова d < 1 / (2 x Fmax), то можно реализовать точную интерполяцию к.ф. K(u,v) в субпиксельной сетке отсчетов.

Для этого надо немного модифицировать стандартную трехшаговую схему расчета двумерных дискретных корреляционных функций с переходом в частотную область, перемножением частотных спектров и и последующим возвращением в пространственную область.

Реализация субпиксельного трекинга в программе QAVIS

На каждом временном такте работы программы текущее значение сигнала волнения h(t) рассчитывается следующим образом:

Шаг
1. Расчет ДПФ начального и текущего кадров.
.
$$\widetilde{I}(k,l)=\mathcal{Д}\Pi\Phi(I(n,m)),\quad \widetilde{T}(k,l)=\mathcal{Д}\Pi\Phi(T(n,m)),\quad k=\overline{0,N_x-1}, l=\overline{0,N_y-1}$$
 .

Шаг
2. Расчет дискретного взаимного спектра
$$S_{IT}(k,l)$$

 $S_{IT}(k,l)=\widetilde{I}(k,l)\times\widetilde{T}^*(k,l),\quad k=\overline{0,N_x-1},\, l=\overline{0,N_y-1}$
 Дополнение его нулями до размера $N\!N_X=Q\!\times\!N_X$, $N\!N_y=Q\!\times\!N_y$

Шаг3. Расчет дискретной к.ф. с использованием процедуры ОДПФ
$$K_{IT}(n,m) = OДП\Phi(S_{IT}(k,l))$$
, $n = \overline{0,NN_x-1}, m = \overline{0,NN_y-1}$.

Шаг
4. Нахождение точки максимума к.ф.
$$\left(N_{\max}\,,M_{\max}\,\right) = \arg\max\left(K_{I\!I}(n,m)\right),\quad n=\overline{0,N\!N_x-1}, m=\overline{0,N\!N_y-1}\,,$$
 Расчет очередного отсчета сигнала волнения $h(t)=M_{\max}\times (d/Q)$

NB. Кроме этого в QAVIS была реализована предложенная в [Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.] оптимизированная по памяти и быстродействию версия представленного алгоритма. В ней расширение кросспектра на шаге 2 не производится, но учитывается на шаге 3, при расчете ОДПФ, который проводится в малой области размером QxQ частотных отсчетов вблизи пиксельного максимума..