Разработка нейросетевого метода восстановления влажностного профиля атмосферы по данным наземного микроволнового радиометра-спектрометра Егоров Д.П.¹, Верина Я.В.², Кравченко О.В.³ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва ²МГТУ им. Н.Э. Баумана, Москва

³Федеральный исследовательский центр "Информатика и управление" РАН (ФИЦ ИУ РАН), Москва

Содержание

• Прямая задача для нисходящего излучения

- предположение многослойной горизонтально однородной среды;
- коэффициенты поглощения и весовые функции, весовая функция Стилина;
- спектр яркостной температуры в микроволновом диапазоне, влияние облачности.

• Обратная задача восстановления интегральных параметров влагосодержания

- двухчастотный и многочастотный методы (классический подход);
- оценка максимальных погрешностей интегральных параметров как косвенно измеряемых величин;
- использование данных измерений радиозондов для оценки устойчивости классических методов к естественной изменчивости профилей метеорологических параметров;
- суть нейросетевого подхода; использование радиозондовых данных в качестве априорной информации при формировании обучающей выборки, ассимиляция данных;
- обучение нейронной модели и её апробация на экспериментальных данных, полученных многоканальным СВЧ радиометром-спектрометром.

Нейросетевой подход в решении обратной задачи восстановления высотного профиля влажности

- формирование обучающей выборки, использование данных радиозондов;
- разработка нейросетевой модели на базе «смеси экспертов»;
- скоринг модели и результаты восстановления профилей.

Прямая задача для нисходящего излучения

Яркостная температура (Тя) нисходящего в направлении надира излучения атмосферы как многослойной горизонтально-однородной среды может быть записана в виде

$$T^{\downarrow}(v) = \int_{0}^{\infty} T(h)\gamma(v,h) \cdot \exp\left[-\int_{0}^{h} \gamma(v,z)dz\right] dh + T_{K} \cdot e^{-\tau(v)},$$
(1)

где $T^{\downarrow}(v)$ – яркостная температура излучения, v – частота излучения, h – высота, T(h)– высотный профиль термодинамической температуры, T_K – температура реликтового фона, $\gamma(v,h)$ – совокупный по всем атмосферным составляющим погонный коэффициент поглощения (ослабления) на данной высоте, $\tau(v)$ – полное поглощение или оптическая толщина атмосферы

$$\tau(v) = \int_{0}^{\infty} \gamma(v,h) dh = \int_{0}^{\infty} \gamma_{0}(v,h) + \gamma_{\rho}(v,h) + \gamma_{w}(v,h) + \cdots dh$$
(2)

Также известна аппроксимация

$$T^{\downarrow}(v) = T_{av}(v) \cdot \left(1 - e^{-\tau(v)}\right) + T_K \cdot e^{-\tau(v)},$$
(3)

где $T_{av}(v)$ – средняя абсолютная температура атмосферы для нисходящего излучения. Вблизи первой линии резонансного поглощения водяного пара 22.235 ± 5 ГГц (К-диапазон) заметные различия в значениях $T^{\downarrow}(v)$, рассчитанных согласно (1) и (3), начинают проявляться лишь при $\tau \sim 1$ нп ($\Delta T^{\downarrow}(v)$ около 3-4 К для всех v).

Рис. 1. Зависимость погонных коэффициентов поглощения от частоты (синяя кривая – водяной пар, красная – кислород) для стандартной атмосферы в приземном слое

ИКИ РАН, Москва, 13-17 ноября 2023

Для нижней атмосферы в микроволновом диапазоне и в случае ясного неба коэффициент $\gamma(v,h)$ представим в виде суммы погонных коэффициентов поглощения в кислороде $\gamma_0(v,h) = \gamma_0(v,T(h),P(h))$ и водяном паре $\gamma_\rho(v,h) = \gamma_\rho(v,T(h),P(h),\rho(h))$, где T(h), P(h) и $\rho(h)$ – высотные профили температуры, давления и влажности соответственно.

Теоретико-эмпирические зависимости погонных коэффициентов поглощения (ослабления) в кислороде и водяном паре от v, T(h), P(h) и $\rho(h)$ постоянно уточняются и могут быть найдены в рекомендациях Международного Союза Электросвязи (МСЭ).

Известно, что

$$\tau_{\rho}(v) = \int_{0}^{\infty} \gamma_{\rho}(v,h) dh \approx \int_{0}^{\infty} \mathcal{S}(v,h) \cdot \rho(h) dh = k_{\rho}(v) \cdot \int_{0}^{\infty} \rho(h) dh = k_{\rho}(v) \cdot Q,$$

где $k_{\rho}(v)$ и S(v, h) – некоторые весовые функции, Q – полная масса водяного пара (по определению).

$$\tau_{\rho}(\mathbf{v}) = \int_{0}^{\infty} \gamma_{\rho}(\mathbf{v}, h) \, dh \approx \int_{0}^{\infty} \frac{S(\mathbf{v}, h) \cdot \rho(h) \, dh$$

Рис. 2. Весовые функции s(v) = S(v, h) в зависимости от высоты h при различных v вблизи первого вращательного резонанса водяного пара 22.235 ГГц. Высотные распределения давления и абсолютной влажности соответствуют стандартным, а профиль температуры воздуха корректируется от стандартного на значение $T_0 = 5 \dots 25$ °C.

20.000 ГГц

20.400 ГГц 21.200 ГГц 21.600 ГГц 22.235 ГГц

22.800 ГГц 23.600 ГГц При наличии облачности к указанной сумме добавляется ещё одно слагаемое – погонный коэффициент $\gamma_{\omega}(v,h)$ поглощения в жидкокапельной влаге, переносимой облаками. По определению он является произведением некоторой весовой функции $k_{\omega}(v,T(h))$ на высотный профиль водности $\omega(h)$.

В то же время в соответствии с теоремой о среднем

$$\int_{0}^{\infty} k_{\omega}(v,T(h)) \cdot \omega(h) dh = k_{\omega}(v,T(h^{*})) \cdot \int_{0}^{\infty} \omega(h) dh,$$

поэтому

$$\tau_{\omega}(v) = \int_{0}^{\infty} \gamma_{\omega}(v,h) dh = k_{\omega}(v,t_{\omega}) \cdot \int_{0}^{\infty} \omega(h) dh = k_{\omega}(v,t_{\omega}) \cdot W,$$

где $t_{\omega} = T(h^*)$ – средняя эффективная температура слоя облачности, W – интегральный водозапас (также по определению). Введем дополнительное обозначение для полного поглощения в кислороде

$$\tau_O(v) = \int_0^\infty \gamma_O(v, h) dh.$$
(4)

Наконец, для случая облачной атмосферы (в отсутствие дождя) получим взаимосвязь полного поглощения $\tau(v)$ и интегральных параметров влагосодержания

$$\tau(v) \approx \tau_0(v) + k_\rho(v) \cdot Q + k_\omega(v, t_\omega) \cdot W.$$
(5)

Связь яркостной температуры $T^{\downarrow}(v)$ с этими параметрами можно получить, подставив (5) в (3).

Для кучевой облачности высотный профиль водности может быть аппроксимирован при известном значении водозапаса W следующим образом

$$w(\xi) = \frac{W}{H} \cdot \frac{\Gamma(2+\mu_0+\psi_0)}{\Gamma(1+\mu_0)\Gamma(1+\psi_0)} \xi^{\mu_0} (1-\xi)^{\psi_0},$$

где $\xi = h/H$ – приведенная высота внутри облака, H – мощность облака (км), μ_0 и ψ_0 – безразмерные параметры. Согласно [1, 2], для кучевых облаков значения параметров равны $\mu_0 = 3.27$, $\psi_0 = 0.67$, а зависимость мощности H кучевого облака от его водозапаса W по приведенным в [1] табличным данным приближенно выражается формулой $H = (7.543 \cdot W)^{0,434}$.

- 1. Спутниковый мониторинг Земли. Микроволновая радиометрия атмосферы и поверхности. / Кутуза Б.Г., Данилычев М.В., Яковлев О.И. // М.: 2016. 336 с.
- Водность кучевых облаков. / Войт Ф.Л., Мазин И.П. // Изв. АН СССР, ФАО. 1972.
 Т.8. №11. С.1166.

Частотный спектр яркостной температуры. Влияние облачности

Рис. 3. Моделирование яркостной температуры нисходящего излучения атмосферы при W = 0 (кривая 1), 0.34 (кривая 2) и 1.66 кг/м² (кривая 3).

В качестве профилей температуры, давления и влажности воздуха используются соответствующие профили для стандартной атмосферы.

СВЧ радиометр-спектрометр «Р22m»

Рис. 4. Радиометр «Р22т»

Спектральные измерения в К-диапазоне проводятся с 2017 г. по настоящее время во Фрязинском филиале Института радиотехники и электроники им. В.А. Котельникова РАН

Характеристика	Значение
Рабочий диапазон частот	18-27.2 ГГц
Разрешение по частоте	200 МГц
Число каналов	47
Флуктуационная чувствительность	0.02 К
Время получения полного спектра	около 11 с.
Угловое разрешение*	5-7°

*элемент пространственного разрешения увеличивается с высотой и примерно на 2 км составляет от 175 до 245 м в зависимости от частоты.

Восстановление интегральных параметров влагосодержания

Пусть в некоторый момент времени измерена Тя нисходящего излучения атмосферы $T_m^{\downarrow}(v)$, а также известны приповерхностные значения метеорологических параметров T_0 , P_0 и ρ_0 в месте расположения радиометра. Проведем корректировку стандартных профилей $T_s(h)$, $P_s(h)$ и $\rho_s(h)$ с учетом имеющихся значений T_0 , P_0 и ρ_0 . Для примера рассмотрим стандартный профиль абсолютной влажности, который задается по экспоненциальному закону

$$\rho_s(h) = \overline{\rho_0} \cdot \exp\left(-\frac{h}{H_{\rho}}\right).$$

Здесь $H_{\rho} = 2.1$ км – характеристическая высота распределения водяного пара. В соответствии с ГОСТ, в стандартной атмосфере $\overline{\rho_0} = 7.5$ г/м³. Корректировка профиля будет заключаться в подстановке измеренного ρ_0 вместо $\overline{\rho_0}$ и получении $\rho_*(h)$ взамен $\rho_s(h)$.

Пользуясь скорректированными профилями, следуя (1) и (2), произведем в предположении нулевой водности расчет значений яркостной температуры $T_*^{\downarrow}(v)$ и полного поглощения $\tau_*(v)$ соответственно. Подставив эти значения в (3), получим оценку на среднюю абсолютную температуру $T_{av}^*(v)$ атмосферы при заданных T_0 , P_0 и ρ_0 . Аналогичным образом получим и $\tau_0^*(v)$ (см. (4)). Весовую функцию $k_{\rho}(v)$ теперь можно определить как

$$k_{\rho}(v) = \left(\int_{0}^{\infty} \gamma_{\rho}^{*}(v,h)dh\right) \cdot \left(\int_{0}^{\infty} \rho_{*}(h)dh\right)^{-1}$$

Для решения обратной задачи восстановления интегральных параметров Q и W по измеренной радиометром яркостной температуре $T_m^{\downarrow}(v)$ снова воспользуемся соотношениями (5) и (3). Оценка на полное поглощение в атмосфере может быть получена следующим образом

$$\tau_e(v) = \ln(T_{av}^*(v) - T_K) - \ln\left(T_{av}^*(v) - T_m^{\downarrow}(v)\right).$$

Таким образом, зная яркостную температуру $T_m^{\downarrow}(v)$ всего в двух частотных каналах v_i , i = 1, 2, с учетом заранее полученных оценок на $T_{av}^*(v_i)$, $\tau_0^*(v_i)$, $k_{\rho}(v_i)$, t_{ω} и $k_{\omega}(v_i, t_{\omega})$ достаточно записать систему двух линейных относительно Q и W уравнений (каждое для своей частоты) и решить ее любым из доступных способов. В этом и заключается двухчастотный метод восстановления интегральных параметров.

$$\tau_e(v_i) - \tau_0^*(v_i) - k_\rho(v_i) \cdot Q - k_\omega(v_i, t_\omega) \cdot W = 0.$$

Отметим, что параметр t_{ω} может быть определен по типу наблюдаемой облачности из усредненных табличных значений

Многочастотный метод

Если величина $T_m^{\downarrow}(v)$ измерена сразу в нескольких частотных каналах v_j , $j = 1, \ldots, N$ (многочастотный метод), то для расчета Q и W решим следующую задачу минимизации N

$$R(Q,W) = \sum_{j=1}^{N} \left(\tau_e(v_j) - f(v_j, Q, W) \right)^2 \to \min_{Q,W},$$
(6)

где

$$f(v_j, Q, W) = \tau_0^*(v_j) + k_\rho(v_j) \cdot Q + k_\omega(v_j, t_\omega) \cdot W.$$

Необходимо найти стационарные точки функции R(Q, W), продифференцировав ее по неизвестным параметрам, приравняв производные к нулю и решив полученную систему уравнений (7) также любым из доступных способов.

$$\sum_{j=1}^{N} \left(\tau_{e}(v_{j}) - f(v_{j}, Q, W) \right) \frac{\partial f(v_{j}, Q, W)}{\partial Q} = 0,$$

$$\sum_{j=1}^{N} \left(\tau_{e}(v_{j}) - f(v_{j}, Q, W) \right) \frac{\partial f(v_{j}, Q, W)}{\partial W} = 0,$$
(7)

ИКИ РАН, Москва, 13-17 ноября 2023

Оценка максимальных погрешностей

Рассмотрим искомые интегральные параметры Q и W как косвенно измеряемые величины, на погрешность измерения которых оказывают влияние ошибки в оценках на средние эффективные температуры $T_{av}^*(v)$ и t_{ω} , а также ошибки при измерении (и калибровке) спектров $T_m^{\downarrow}(v)$. Таким образом, например, $t_{\omega} = \overline{t_{\omega}} + \Delta t_{\omega}$, где $\overline{t_{\omega}}$ – среднее значение, а Δt_{ω} – случайная ошибка. Аналогично можем записать для искомых параметров $Q = \overline{Q} + \Delta Q$ и $W = \overline{W} + \Delta W$. Если известны средние значения \overline{Q} и \overline{W} , то максимально возможные ΔQ и ΔW найдем по методу оценки максимальных погрешностей

$$\Delta Q = \pm \bar{Q} \cdot \sqrt{A + B + C},\tag{8}$$

где

$$A = \sum_{j=1}^{N} \left[\frac{\partial \ln Q}{\partial T_m^{\downarrow}(v_j)} \right|_{\bullet} \Delta T_m^{\downarrow}(v_j) \right]^2, \quad B = \sum_{j=1}^{N} \left[\frac{\partial \ln Q}{\partial T_{av}^{*}(v_j)} \right|_{\bullet} \Delta T_{av}^{*}(v_j) \right]^2, \quad C = \left[\frac{\partial \ln Q}{\partial t_{\omega}} \right|_{\bullet} \Delta t_{\omega} \right]^2.$$

Для ΔW аналогично (8). Здесь Q, W – общее решение задачи (6) относительно параметров $T_{av}^{*}(v)$, t_{ω} и $T_{m}^{\downarrow}(v)$, а также T_{0} , P_{0} и ρ_{0} . Символом • обозначается список конкретных числовых значений этих параметров.

Таблица 1. Модули величин максимальных погрешностей ΔQ и ΔW при $\Delta T_m^{\downarrow}(v) = \pm 3$ K, $T_{av}^*(v) = 0 \pm 5^{\circ}$ C и $t_{\omega} = -2 \pm 5^{\circ}$ C в различных условиях облачности

Условия	$ar{Q}$, г/см²	\overline{W} , кг/м²	τ (22.2), нп	τ (27.2), нп	∆ <i>Q</i> , г/см²	∆W , кг/м²
(1)	1.58	0.01	0.14	0.07	0.08	0.03
(2)	1.71	0.15	0.17	0.10	0.09	0.04
(3)	1.99	0.52	0.23	0.17	0.10	0.08
(4)	2.28	4.70	0.73	0.87	0.17	0.71

В таблице 1 представлен анализ максимальных погрешностей ΔQ и ΔW в диапазоне частот v от 18 до 27.2 ГГц (шаг по v составляет 0.2 ГГц) при $T_0 = 15^{\circ}$ С, $P_0 = 1013$ мбар и $\rho_0 = 7.5$ г/м³ для различных условий облачности: 1 – отсутствие облачности; 2 – облака cumulus fractus/humilis, слабо развитые по вертикали; 3 – кучевые облака cumulus humilis/mediocris; 4 – мощные кучевые облака cumulus congestus, сильно развитые по вертикали. Для восстановления используется многочастотный метод.

Использование данных радиозондов

Рис. 5. Сеанс от 24 августа 2019 г. Сплошными линиями изображены измеренные радиозондом высотные профили абсолютной влажности (а) и температуры (б) воздуха. Пунктирной линией показаны соответствующие профили для стандартной атмосферы, скорректированные на приповерхностные значения метеопараметров

Естественная изменчивость высотных профилей метеопараметров

Рис. 6. По оси Ох отложены значения Q^* , рассчитанные прямым интегрированием измеренного радиозондом высотного профиля абсолютной влажности. Кривая 1 средние при данных Q^* значения 0. восстановленные многочастотным методом (метод 2). Кривая 2 - средние при данных 0* Q_{std} , значения полученные интегрированием стандартного абсолютной распределения влажности (скорректированного на ρ_0). Для кривых 1 и показаны доверительные 2 интервалы среднего значения (на 100 измерений). Области 3 и 4 отражают соответствующий размах по Q и Q_{std}

Нейросетевой подход. Формирование обучающей выборки

Нейросетевой подход. Результаты

Рис. 8. Временной ход полной массы водяного пара, восстановленный ПО спектрам яркостной температуры (Кдиапазон), измеренным помощью с «Р22m» 03 августа 2019, 12:30 - 13:30 UTC+3, г. Фрязино, Московская область. Кривая 1 – многочастотный метод, кривая 2 – модель на основе нейронной сети

Рис. 9. Временной ход интегрального водозапаса облаков, восстановленный по спектрам яркостной температуры (Кдиапазон), измеренным с помощью «Р22m» 03 августа 2019, 12:30 – 13:30 UTC+3, г. Фрязино, Московская область. Кривая 1 – многочастотный метод, кривая 2 – модель на основе нейронной сети

Задача о восстановлении высотного профиля влажности

Рис. 10. Формирование обучающей выборки для задачи восстановления профиля влажности

Разработка нейросетевой модели на базе «смеси экспертов»

Рис. 11. Поток данных в предложенной нейросетевой модели. Цифрой 1 обозначена группа ИНС-экспертов (k = 1..К), каждый из которых отдельно от остальных (параллельно) обучается на копии вектора x_i выдавать наилучшую оценку у_i для своего интервала высот. Интервалы, относящиеся к разным экспертам, специально выбираются с наложением. В качестве ИНС-эксперта рассмотрен полносвязный многослойный перцептрон, включающий 2 скрытых слоя по 100 нейронов в каждом. Функция активации скрытого слоя – ReLU. В процессе обучения используется стохастической алгоритм оптимизации «Adam». Выбрана логарифмическая функция потерь и соответствующий ей функционал качества. Цифрой 3 отмечена ИНС, принимающая по полученным от Ee оценкам решение. «экспертов» окончательное характеристики не отличаются от характеристик ИНСэксперта, с той разницей, что в скрытых слоях используется большее число нейронов: в первом – 250 нейронов, а во втором – 150.

Результаты

Рис. 12 и 13. Восстановление профилей (летний период)

Рис. 14 и 15. Восстановление профилей (зимний период)

Заключение

- Разработана модель на основе искусственных нейронных сетей для восстановления высотного профиля абсолютной влажности по яркостным температурам нисходящего излучения атмосферы, полученным вблизи двух линий резонансного поглощения водяного пара 22.2 и 183.3 ± 5 ГГц, а также в частотных каналах 36 и 89 ГГц.
- Программная реализация модели предполагает возможность ее обучения с использованием технологии вычислений на графических процессорах.
- Обучающая выборка сформирована путем многократного решения прямой задачи моделирования спектров яркостной температуры по данным около двух тысяч сеансов радиозондовых измерений профилей метеорологических параметров. При этом прямая задача решается в предположении изначально нулевого водозапаса W, а затем при W ≠ 0.
- Результаты применения обученной модели к данным валидационной подвыборки показывают удовлетворительное согласие восстановленных профилей абсолютной влажности и экспериментальных значений, измеренных радиозондом. Это свидетельствует о наличии у модели обобщающей способности, т.е. способности выдавать правильные ответы не только для примеров, участвовавших в процессе обучения, но и для любых новых, которые не участвовали в нем.
- Необходимо провести оценку качества работы данной модели с экспериментальными значениями яркостных температур, полученными непосредственно при радиометрических наблюдениях, проводимых синхронно с радиозондовыми. Это является предметом дальнейших исследований.