

О возможности определения толщины арктического морского льда по данным AMSR2

Заболотских Е.В., Хворостовский К.С.

Лаборатория спутниковой океанографии Российский Государственный Гидрометеорологический Университет (РГГМУ) Санкт-Петербург, Россия

Измерения толщины морского льда Арктики

Алексеева Т.А., Фролов С.В., Сероветников С.С. Обзор методов и основных результатов измерения толщины морского льда в Арктике // Российская Арктика. 2021. № 12. С. 33–49. DOI: 10.24412/2658-4255-2021-1-33-49:

- Бурение;

- Эхолокация (акустичесокое подледное зондирование);
- > Электромагнитный метод;
- Визуальные и телевизионные судовые наблюдения.

Спутниковые измерения толщины морского льда Арктики

- Толщина льда SIT– один из самых сложных параметров ледяного покрова для восстановления по данным спутниковых измерений;
- На сегодняшний день толщину льда Арктики оценивают по данным спутниковых альтиметров (лазерных и радаральтиметров);
- Методы восстановления SIT по данным измерений и радаральтиметров, и лазерных альтиметров, для льда толщиной менее 1 м обладают погрешностями, превышающими значения климатической неопределенности SIT;
- Временное разрешение карт толщин льда по данным альтиметрических измерений составляет примерно один месяц, пространственное разрешение - 25–100 км.

Альтиметрические измерения толщины морского льда Арктики

Измерения альтиметра CryoSat-2 за сутки 30 апреля 2019

Level 3

Альтиметрические измерения толщины морского льда Арктики

1 февраля, 2019

1 февраля, 2019 за 30 предыдущих дней

чем выше частота, тем больше чувствительность к возрасту льда

Измерения толщины морского льда по данным спутниковых микроволновых радиометров

Microwave Remote Sensing of Sea Ice. Frank D. Carsey (Editor). 1992. Washington, DC: American Geophysical Union (Geophysical Monograph 68). 478 p

Измерения толщины морского льда по данным спутниковых микроволновых радиометров

Глубина проникновения э/м волны в морской лед зависит, главным образом, от солености льда, и для частот L-диапазона на порядок выше, чем для частот C-диапазона

Толщина льда по данным SMOS/SMAP

Глубина формирования излучения в L-диапазоне составляет несколько десятков см, поэтому измерения SMOS/SMAP могут быть использованы для определения SIT тонких льдов (до 50-100 см).

Advanced Scanning Microwave Radiometer 2

18 Мая 2012 Япония запустила новый спутниковый сканирующий многоканальный микроволновый радиометр с самой большой в мире вращающейся антенной - Advanced Microwave Scanning Radiometer (AMSR2) на борту спутника Global Change Observation Mission – Water (GCOM-W1 "Shizuku")

Дополнительные каналы

Лучше, чем у AMSR-E

Характеристики каналов				
Центр. частота. [ГГц]	Полоса [МГц]	Поляр.	Угл. разреш. [гр.] (Простр. разреш. [км])	Частота сканир. [км]
6.925 7.3	350		1.8 (35 × 61)	
10.65	100	В & Г	1.2 (24 × 41)	10
18.7	200		0.65 (13 × 22)	
23.8	400		0.75 (15 × 26)	
36.5	1000		0.35 (7 × 12)	
89.0(A&B)	3000	!	0.15 (3 × 5)	5

аналогично AMSR-E

Толщина льда по данным AMSR

- Глубина формирования излучения морского льда для частот измерений радиометров серии AMSR составляет от нескольких мм (на каналах вблизи 90 ГГц) до нескольких см (на каналах С-диапазона);
- Это означает, что, кроме изменения диэлектрических свойств верхнего слоя льда с возрастом (толщиной), не существует физических оснований для оценки толщины морского льда по измерениям на данных частотах;
- Попытки использовать данные SSM/I и AMSR для оценки толщины молодого льда (SIT ~ 10-20 см) предпринимались неоднократно (Martin et al., 2005; Nihashi et al., 2009; Singh et al., 2011; Tamura et al., 2007);
 - *Martin S., Drucker R., Kwok R., Holt B.* Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E // Geophys. Res. Lett. 2005
 - *Nihashi S., Ohshima K.I., Tamura T., Fukamachi Y., Saitoh S.* Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E // J. Geophys. Res. Oceans. 2009
 - *Singh R.K., Oza S.R., Vyas N.K., Sarkar A.* Estimation of thin ice thickness from the advanced microwave scanning radiometer-EOS for coastal polynyas in the Chukchi and Beaufort Seas // IEEE Trans. Geosci. Remote Sens. 2011
 - *Tamura T. Ohshima K.I., Markus T., Cavalieri D.J., Nihashi S., Hirasawa N.* Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean // J. Atmospheric Ocean. Technol. 2007

Chi J., Kim H.-C. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks // GIScience Remote Sens. 2021:

Поля разностей коэффициентов излучения 1 января 2020

Разности коэффициентов излучения не зависят от атмосферных параметров и чувствительны к возрасту льда

Корреляция $\Delta \chi$ с возрастом (толщиной) льда

Нилас, 2 – Молодой лёд, 3 – Тонкий однолетний лёд
 4 – Средний однолетний лёд, 5 - Толстый однолетний лёд
 6 – Старый (многолетний лёд)

- ▶ Был настроен НС алгоритм оценки толщины морского льда по данным AMSR2;
- ▶ В качестве входных параметров использовались разницы в коэффициентах вертикально поляризованного излучения d1=χ^V_{36.5} - χ^V_{18.7}, d2=χ^V_{23.8} - χ^V_{18.7} и d3=χ^V_{10.65} - χ^V_{6.9}, поскольку эти функции наиболее чувствительны к изменениям диэлектрических свойств льда и не зависят от свойств атмосферы;
- CryoSat-2 Level-4 данные по толщине льда использовались для настройки алгоритма;
- Для приведения в соответствие пространственно-временные масштабы альтиметрических и радиометрических измерений из данных AMSR2 уровня Level 3 были созданы 30-дневные средние (кна каждые сутки) для стабильных зимних условий (январь – апрель, ноябрь и декабрь 2020).

CryoSat-2 - AMSR2 совмещение

Данные за текущий день аккумулируются для CryoSat-2 и усредняются для AMSR2 за 30 предыдущих дней

- Максимальная корреляция (0.84) между d2 и SIT, минимальная (0.79) – между d3 и SIT;
- Низкая корреляция в области SIT < 2 м
 1) либо из-за отсутствия влияния SIT на d(1,2,3) для тонких льдов;
 - 2) либо из-за высокой изменчивости полей тонких льдов за 30 дней;
 - 3) либо из-за погрешностей CryoSat-2 SIT для тонких льдов

Нейронно-сетевой алгоритм оценки толщины морского льда по данным AMSR2

- Регрессионный НС алгоритм с полностью связанной сетью с 1 скрытым уровнем из 20 нейронов и обратным распространением ошибок был настроен для восстановления SIT из вектора входных данных {d1, d2, d3}.
- 10% данных (82060) использовались для настройки, 90% (735746)
 для тестирования алгоритма и расчета среднеквадратичной ошибки.

Результаты тестирования алгоритма

Поля толщины морского льда

- Значения d1, d2 и d3 должны уменьшаться с ростом толщины льда;
- Происходит ли это в реальности с течением зимы?
- Был проведен анализ динамики d1, d2 и d3 в нескольких областях однолетнего и многолетнего льда за период январь – апрель 2020

Многолетний лёд

Однолетний лёд

-0.16

-0.18

-0.20

-0.16

-0.18

-0.20