ХХІІ международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА" 11 - 15 ноября 2024 г., г. Москва

Журавлева Т.Б.

Институт оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, Россия

Моделирование оптических явлений в атмосфере в присутствии анизотропной кристаллической облачности: горизонтально ориентированные частицы

Оптические явления, характерные для анизотропных облаков: наземные наблюдения

Гало – световые дуги или окружности вокруг Солнца

Дуги Гринлера (горизонтально ориентированные столбики)

Ложные солнца (паргелии, плоские призмы) – яркие радужные пятна на пересечении паргелического круга и кругами гало 22° и 46°

Солнечная дуга (столбики Парри)

Moilanen J, Gritsevich M. Light scattering by airborne ice crystals – An inventory of atmospheric halos. J. Quant. Spectrosc. Radiat. Transf. 2022; <u>290</u>:108313. <u>https://doi.org/10.1016/j.jqsrt.2022.108313</u>. Tape W, Moilanen J. Atmospheric Halos and the Search for Angle X; Washington DC: American Geophysical Union; 2006.

Наблюдения из космоса: POLDER, CALIPSO,...

Оценки доли кристаллических и смешанных облаков, содержащих частицы с преимущественно горизонтальной ориентацией (ПГО):

POLDER (Polarization and Directionality of the Earth Reflectances)

Chepfer H. et al., JQSRT (1999): доля кристаллических облаков с ПГО ~40%; Bréon F. M. and Dubrulle B., JAS (2004): ПГО присутствуют в более чем 50% пикселей, идентифицированных как кристаллические

Доля частиц с ПГО колеблется от 0,1% до 1% (в целом <10%)

CALIPSO (Cloud-Aerosol Lidar и Infrared Pathfinder Satellite Observations)

Noel V. and Chepfer N., JGR (2010): кристаллы с ПГО наличествуют примерно в 6% оптически тонких облаков (т<3)

Доля частиц с ПГО составляет примерно 1-5% при т<3 (в целом 0,1-0,5%)

Kikuchi M. et al., JGR (2020): климатология горизонтально ориентированных пластинок, температура

Наблюдения из космоса: солнечные блики

EPIC/DSCCOVR (Earth Polychromatic Camera/Deep Space Climate Observatory)

Marshak et al., GRL, 2017; Varnai et al., Rem. Sens., 2021: алгоритм определения бликов, обусловленных наличием кристаллических частиц с преимущественно горизонтальной ориентацией

Радиационные коды

Метод добавления-удвоения (Takano Y. and Liou K.-N., JAS, 1989)

Метод дискретных ординат (*Runheng H., Liou K.-N.,* Adv. Atmos Sci., 1985)

Двухпотоковое приближение (Lavigne C. et al, Appl. Optics. 2008)

Метод Монте-Карло

Forster L., Mayer B., Emde C. et al.

Ray tracing algorithm for oriented ice crystals (CrystalTrace) + Monte Carlo model MYSTIC of libRadtran

Forster, L. Information Content of Halo Displays for Remote Sensing of Ice Crystal Properties. 2017. Thesis. Muenchen.

Пригарин С.М., Боровой А.Г., Гришин И.А., Оппель У.Г., Журавлева Т.Б. и др. с 2005

Метод Монте-Карло + оптическая модель частиц с ПГО

Пригарин С. М., Боровой А. Г., Гришин И. А., Оппель У. Г. Статистическое моделирование переноса излучения в оптически анизотропных кристаллических облаках // ОАО. 2007.

Журавлева Т. Б. Имитационное моделирование полей яркости солнечной радиации в присутствии оптически анизотропной кристаллической облачности: алгоритм и результаты тестирования // ОАО. 2020.

Модель ИОА СО РАН: метод геометрической оптики Гексагональные пластинки и столбики 2-ух видов

Бурнашов А. В., Боровой А. Г. Рассеяние света горизонтально ориентированными ледяными пластинками. І. Интенсивность рассеянного света // ОАО. 2007. Бурнашов А. В., Боровой А. Г. Рассеяние света горизонтально ориентированными столбиками // ОАО. 2008. Бурнашов А. В., Кустова Н. В. Рассеяние света преимущественно ориентированными ледяными кристаллами. І. Гексагональные пластинки // ОАО. 2011.

Texas A&M University: метод геометрической и физической оптики Гексагональные пластинки и столбики (база данных)

Saito, M., and P. Yang. Oriented ice crystals: A single-scattering property database for applications to lidar and optical phenomenon simulations // J. Atmos. Sci. 2019

Длины волн: 355, 532, and 1064 нм Диапазон максимальных размеров: 50-10000 мкм Количество направлений угла падения: 94

Модель ИОА СО РАН: пластинки, d/2a=0.1

P(*c*',*c*) – зенитное распределение рассеянного излучения, аппроксимация: 101 × 201, 2 круга: паргелический/ субпаргелический или 4 (+зенитный/околозенитный)

 $Q(c',c,\Delta\psi)$ - азимутальное распределение рассеянного излучения, аппрксимация 101 × 201 × 91

Burnashov, A. V.; Borovoi, A. G. Atmos. Ocean. Opt., 2008: 65-75% рассеянной энергии независимо от угла падения и параметра формы, сосредоточена в пределах семи гало, причем при определенных значениях фактора формы некоторые гало могут полностью исчезать.

Зависимость коэффициента ослабления от направления распространения излучения

Особенности алгоритма статистического моделирования переноса солнечной радиации в облаках, оптически анизотропных относительно зенитного угла падающего излучения

Неполяризованное излучение, флаттер равен 0

$$I(\vec{r},\vec{\omega}) = \int_{0}^{2\pi} \int_{-1R^3}^{1} \Lambda(\vec{r}',c') \sigma(\vec{r}',c') g(\vec{r}',c',\psi',c,\psi) \frac{\exp(-\tau(\vec{r}',\vec{r}))}{|\vec{r}-\vec{r}'|^2} \times \delta\left(\vec{\omega} - \frac{\vec{r}-\vec{r}'}{|\vec{r}-\vec{r}'|}\right) I(\vec{r}',\vec{\omega}') d\vec{r}' dc' d\psi' + I_0(\vec{r},\vec{\omega})$$

1. Моделирование длины свободного пробега: $p(l) = \sigma(c) \exp\{-l\sigma(c)\}, l > 0$

2. Направление движения фотона после столкновения рассчитывается с учетом зависимости индикатрисы рассеяния излучения от зенитного угла падающего изл

Распределения P(c',c) и $Q(c',c,\Delta\psi)$

- $c' \in [0,1]$ $c \in [-1,1]$ $\Delta \psi \in [0,180^{\circ}]$
- $c' \in [0,1]$ косинус угла падения;
- $c \in [-1,1]$ косинус угла рассеяния;
- $\Delta \psi \in [0,180^{\circ}]$ изменение азимутального угла;

Шаг 1: розыгрыш с по заданному с' Шаг 2: розыгрыш $\Delta \psi$ по заданным с' и с

Результаты моделирования интенсивности /

Изолированный облачный слой

+ подстилающая поверхность

+ подстилающая поверхность + аэрозоль + молекулы воздуха

Облака: 9-10 км Коэффициент ослабления облаков: 0.03, 0.3,1 км⁻¹ Альбедо однократного рассеяния: 1

```
Аэрозоль: \tau_a=0.15 (OPAC, cont. averaged); \tau_R=0.093
```

Альбедо ПП (закон Ламберта): 0, 0.5,0,9

SZA: 25 – 75°

80 70 60 - 100.0 50 40 30 - 10,00 20 10 - 1,000 0 10 20)5)5 5 -0.100030 40 20 20 20 50 - 0.0100 60 35 35 70 ა0 <u>.</u>0 - 0.0010 <u>ა</u>0 80 SZA=50° SZA=25° SZA=75°

Моделирование поля отраженной радиации без учета аэрозольного ослабления и рэлеевского рассеяния и отражения от подстилающей поверхности (1): гексагональные пластинки

σ=0.3 км⁻¹

Субпаргелион, окологоризонтный и околозенитный круги

Гексагональные пластинки: Субпаргелический круг

Зависимость от SZA

SubSD – отсутствует при SZA=25° и смещается в сторону бОльших значений VAA: VAA≈24° при SZA=75° и VAA≈36-38° при SZA=50°

44°SubP и 66°SubP фиксируются при SZA> 60° Моделирование поля отраженной радиации без учета аэрозольного ослабления и рэлеевского рассеяния и отражения от подстилающей поверхности (2): столбики Парри

Название	Аббревиатура
Parry subinfralateral arc	subp.i.a
Parry subsunpralateral arc	subp.s.a
Upper subsuncave Parry arc	subu.sc.p.a
Lower subsuncave Parry arc	subl.sc.p.a
Subhelic arc	sh.a
Subsuncave Parry arc	subsc.p.a
Subparhelic circle	subpc
Subforward peak (Subsun)	SS

Влияние подстилающей поверхности Закон Ламберта

Мононаправленный источник

ПП – диффузный источник

Задача на "пропускание"

Влияние оптической толщины *т*=0.03 – отличие при VAA<35-40° *т*=1 - влияние ПП нивелируется

Влияние альбедо ПП (гексагональные пластинки): **о=0.03** км^{-1,} SZA=45°

Влияние альбедо ПП (столбики Парри): σ=0.03 км^{-1,} SZA=50°

Линии гало – усиливаются; ПП - подсвечивает

Влияние молекулярно-аэрозольного компонента атмосферы

