Способ расчёта относительных концентраций ионов водорода, гелия и кислорода в ионосфере Земли

А.О.Рябов НИРФИ ННГУ им. Н.И. Лобачевского

УСЛОВИЯ И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

В данной работе используются результаты, полученные с помощью бортовой аппаратуры микроспутника DEMETER. Высота орбиты спутника порядка 660 км.

Нагревный стенд "Сура" расположен в 120 км к востоку от г. Нижний Новгород (координаты $56,15^0$ с. ш., $46,1^0$ в. д.). Эффективная мощность излучения стенда изменяется в пределах от 80 МВт на частоте излучения $f_r = 4~300~\text{к}\Gamma$ ц до 280 МВт на частоте $f_r = 9~300~\text{k}\Gamma$ ц.

Здесь рассматривается сеанс от 27.08.2009. Время наибольшего сближения спутника с центром возмущенной магнитной силовой трубки — 18:02:26 (UT), минимальное расстояние до ее центра — 73 км, индекс планетарной геомагнитной активности $K_p = 3$.

На рис. 1 представлена спектрограмма волновых возмущений магнитного поля для сеанса 27.08.2009 г. На данной спектрограмме наблюдаются характерные кривые, имеющие особенности в виде загибов на частоте порядка гирочастоты протонов ($600~\Gamma$ ц) и частоте порядка гирочастоты ионов гелия ($150~\Gamma$ ц).

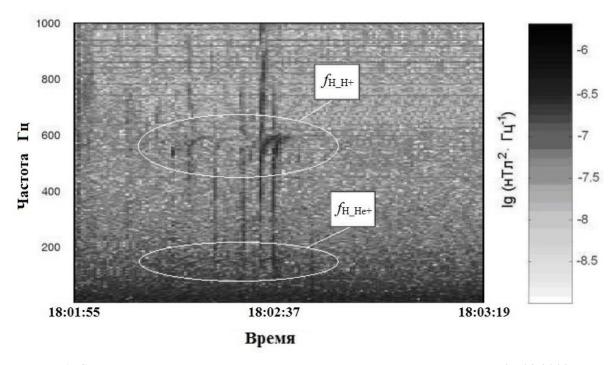


Рис. 1. Спектрограмма волновых возмущений магнитного поля для сеанса 27.08.2009 г.

Подобные особенности динамических спектров в области ионно-циклотронных резонансов происходят или из-за грозовых разрядов, или из-за потоков быстрых электронов. Однако в данном случае в окрестности 300 км зоны вокруг стенда "Сура" грозовых разрядов в эти дни зарегистрировано не было.

ХАРАКТЕРИСТИКИ РАСПРОСТРАНЕНИЯ КНЧ-СНЧ ИЗЛУЧЕНИЙ

На рис. 2 представлены полученные с помощью метода сингулярного разложения характеристики плазменно-волновых возмущений в ионосфере на частотах порядка гирочастоты ионов водорода (600 Гц).

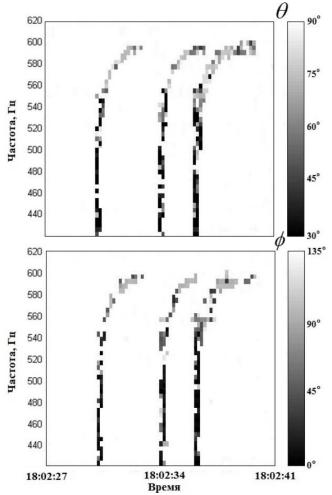


Рис. 2. Характеристики плазменно-волновых возмущений в ионосфере: частотно-временные зависимости полярного и азимутального углов (верхняя и нижняя панели).

Входными данными для получения результатов были время и три компоненты магнитного поля. Эти величины позволили определить компоненты волнового вектора **k**, с помощью которых по формулам были рассчитаны частотно-временные зависимости полярного (верхняя панель) и азимутального (нижняя панель) углов. Подробнее об этом в статье − Рябов А.О. Определение ионного состава внешней ионосферы на основе характеристик КНЧ-СНЧ-волн, регистрируемых во время работы стенда "СУРА". Физика плазмы. 2018. Т. 44. № 11. С. 916-921.

Особенность (загиб) дисперсионных кривых указывает на то, что на определенной частоте ω_{co} называемой перекрестной частотой, возможен энергетический обмен между характеристическими волнами (быстрой магнитозвуковой и ионно-циклотронной).

Используемые результаты сеанса за 27.08.2009 г., были подтверждены аналогичными результатами для других сеансов.

МЕТОД ОПРЕДЕЛЕНИЯ ИОННОГО СОСТАВА

Как следует из Рис. 2, перекрестная частота характеризуется квазипродольным распространением вдоль геомагнитного поля. Для волновых нормалей, которые очень близки к направлению магнитного поля, поляризация и показатели преломления двух характеристических волн почти одни и те же там, где $\omega = \omega_{co}$, и одна волна возбуждает другую при своем распространении. В связи с этим может быть применен метод определения ионного состава на высотах внешней ионосферы Земли.

В ионосферной плазме в большинстве обстоятельств необходимо учитывать присутствие нескольких сортов ионов, имеющих различные массы, а следовательно, и различные гирочастоты Ω . Практически все ионы в ионосферной плазме относятся к ионам трех типов (H+, He+, O+) с концентрациями n_1 , n_2 , n_3 и массами m_1 , m_2 , m_3 соответственно. При этом должно выполняться условие квазинейтральности:

$$n_1 + n_2 + n_3 = n_e, (1)$$

где n_e — концентрация электронов. Тогда можно записать выражение для ионов водорода:

$$X_{1} = \frac{n_{1}e^{2}}{\varepsilon_{o}m_{1}\omega^{2}} = \frac{n_{1}}{n_{e}} \cdot \frac{m_{e}}{m_{1}} X_{e} = \frac{N_{1}}{M_{1}} X_{e},$$

где введены обозначения:

$$N_1 = \frac{n_1}{n_e}, M_1 = \frac{m_1}{m_e}.$$

Аналогично можно записать выражения для ионов гелия и кислорода. Далее введем обозначение:

$$Y = \frac{\Omega}{\omega}$$
.

Тогда:

$$Y_1 = Y_e / M_1, Y_2 = Y_e / M_2, Y_3 = Y_e / M_3.$$

Для поляризации можно записать:

$$P = P_e + P_1 + P_2 + P_3$$

где P_e — вектор поляризации электронов, а P_1 , P_2 и P_3 — векторы поляризации соответствующих ионов.

Величина (n^2-1) получается путем сложения отдельных векторов поляризации от электронов и трех сортов ионов и в результате получаем выражение:

$$n^{2} - 1 = -\left(\frac{X_{e}}{1 \pm Y_{e}} + \frac{X_{1}}{1 \mp Y_{1}} + \frac{X_{2}}{1 \mp Y_{2}} + \frac{X_{3}}{1 \mp Y_{3}}\right),\tag{2}$$

где n^2 – квадрат показателя преломления.

Дисперсионные ветки, являющиеся решениями для верхнего и нижнего знаков, пересекаются на перекрестной частоте ω_{co} . Тогда из (2) при $\omega = \omega_{co}$ можно приравнять решения для верхнего и нижнего знаков и после ряда преобразований получить

$$\frac{\omega_{co}^{2}}{\Omega_{e}^{2}} = \frac{N_{1}}{\left(\frac{\Omega_{e}}{\omega_{co}}\right)^{2} - M_{1}^{2}} + \frac{N_{2}}{\left(\frac{\Omega_{e}}{\omega_{co}}\right)^{2} - M_{2}^{2}} + \frac{N_{3}}{\left(\frac{\Omega_{e}}{\omega_{co}}\right)^{2} - M_{3}^{2}}.$$
(3)

Из (3) можно получить выражения для ионов водорода и ионов гелия, и вместе с преобразованным условием квазинейтральности (1) они образуют систему уравнений

$$\begin{cases}
\frac{N_1}{\alpha_1^2 - 1} + \frac{N_2}{\alpha_1^2 - 16} + \frac{N_3}{\alpha_1^2 - 256} = \frac{1}{\alpha_1^2}, \\
\frac{N_1}{16\alpha_2^2 - 1} + \frac{N_2}{16\alpha_2^2 - 16} + \frac{N_3}{16\alpha_2^2 - 256} = \frac{1}{16\alpha_2^2}, \\
N_1 + N_2 + N_3 = 1
\end{cases} \tag{4},$$

где $\alpha_I = \frac{\Omega_{II}}{\omega_{co1}}$, $\alpha_2 = \frac{\Omega_{I2}}{\omega_{co2}}$; Ω_{II} , Ω_{II} - гирочастоты ионов водорода и гелия, ω_{co1} , ω_{co2} - перекрестные настоты

Таким образом, зная гирочастоты и перекрестные частоты, можно определить ионный состав среды.

Используя данные сеанса за 27.08.2009 г., представленные на рис.1, можно определить значения гирочастот ионов и перекрестные частоты. Частота отсечки для верхнего загиба соответствует гирочастоте ионов водорода ($Q_I = 600~\Gamma$ ц), а частота, где вертикальная линия начинает загибаться, соответствует перекрестной частоте ($\omega_{col} = 570~\Gamma$ ц). Аналогичным образом определяются искомые величины для нижнего загиба ($Q_2 = 150~\Gamma$ ц, $\omega_{co2} = 138~\Gamma$ ц). Подставляя эти величины в систему уравнений (4), получаем следующие значения относительного содержания ионных компонент для трех моментов времени ("1", "2" и "3"):

1) для 18:02:30: $N_1=0.19$; $N_2=0.20$; $N_3=0.61$; 2) для 18:02:34: $N_1=0.22$; $N_2=0.20$; $N_3=0.58$; 3) для 18:02:37: $N_1=0.13$; $N_2=0.15$; $N_3=0.72$;

где N_1 , N_2 , N_3 — относительные концентрации ионов водорода, гелия и кислорода соответственно.

На рис. 3 представлены данные концентрации ионов основных компонент среды, полученные с помощью бортовой аппаратуры ИСЗ DEMETER. N_1 , N_2 , N_3 - относительные концентрации ионов водорода, гелия и кислорода в процентах.

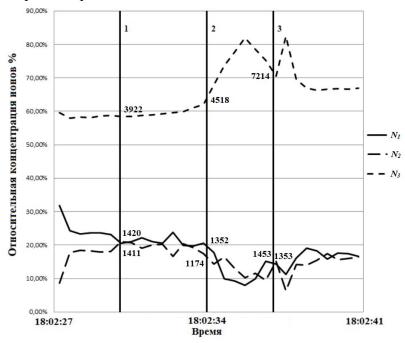


Рис. 3. Относительная концентрация разных сортов ионов $(N_1, N_2, N_3$ - соответственно водород, гелий и кислород).

Результаты представленного выше метода хорошо соответствуют экспериментальным данным (расхождение — около 7 %). Таким образом, описанный способ позволяет достаточно точно определить ионный состав на высотах внешней ионосферы Земли. Ограничения результативности могут быть связаны с точностью входных данных, выбором трехкомпонентной модели (ионы водорода, гелия, кислорода) и использованием выражения показателя преломления для квазипродольного распространения в данном случае.