ХХП.А.80 Математический Микроскоп – новые возможности в астрономии и в дистанционных исследованиях

Е.Н. Терентьев, Ф.В. Шугаев,

Физический факультет МГУ им. М.В. Ломоносова, <u>en.teren@mail.ru;</u>

Гравитационные Детекторы LIGO/Virgo зафиксировали **Гравитационные Волны (ГВ)** от аккреционных дисков Черных Дыр (ЧД) и пары Нейтронных Звезд (НЗ). В работе демонстрируются итоги анализа данных-изображений ЧД и НЗ с рентгеновского телескопа Чандра на нашем Математическом Микроскопе (ММ). Наблюдаемые особенности в Сверх Разрешённых (SR) изображениях на выходе ММ мы связываем с **ГВ**, которые были одновременно зафиксированы Гравитационными Детекторами (ГД), расположенными на Земле.

Mathematical Microscope & Physical Principle Turning (PPT); AIP)

We need to find a solution of the set of systems of equations $Y|_A = \{O\} X$ (CBEPTKA). Note that we do not know the AF A. The parametric set of discrete reversible AF $\{O\}$ corresponds (in accordance with our "a priori information about") the unknown AF A.

The solution Y | A ={O} X can be found in the following **PPT**: there are separate isolated objects-points in X (театральный бинокль).

The MM&=PPT solution includes three aspects:

- 1) a reversible **AF Q=A**, and
- a super-resolved image X=R Y, R=Q⁻¹, with a minimum norm
 Nor (R). If in the resulting super-resolved image X,
- We detect individual objects-points. PPT becomes a fact.
 We have a correct solution in this cases.

Conditioned Super-Resolution with AF O:

Обусловленность AF O: DI p = 1/min |MTF(O)|, PPT The main problem of the controlled AF selection $pO=pR^{-1}$ is set as a minimum task (pO <->pR):

 $\min \|\mathbf{R}\| = \frac{\min}{LO} \{ \|\mathbf{pR}\| \mid \operatorname{Err}(\mathbf{pO}) \leq \operatorname{err}, LO \not \{ \mathbf{pO}(\mathbf{Par}) \mid [\operatorname{Loc}, SDx, DI] \} \}, \|\mathbf{pR}\| \sim DI$

Теорема: Если значение индикатора обратимости II(R*O)(0,0)=(R;O)=1, то **R=O**⁻¹, **pR=pO**⁻¹.

Super Resolution (SR) Values. If there is a normalization of AF O:

 $\Sigma O = 1$, then at zero MTF M(O)(0,0) = 1, then we will evaluate Super Resolution (SR) by the value: $SR = pSR = \Sigma M(pR)M(O)/\Sigma M(O)$

CC={x=Dx, y=lg(Nor(zR)), z=loc}

Квазар: ЧД поглощает вещество из окружающего аккреционного диска

(а-с) сечения АФ ММ

-20

Представлено два изображения квазара **he1104**, полученного после ГЛ с помощью Чандры. Заметим, что два ГЛ изображения квазара he1104 [2] были **дополнительно улучшены методом микро-линзирования**, в котором учтена информация о скорости вращения аккреционного диска и самой ЧД, представленного в работе [4]. Это улучшение позволило нам с помощью MM (+ еще учет АФ А Чандры, см. (а) выявить особенности- артефакты ГВ в квазарах.

Гравитационные Волны у вращающегося квазара he1104

https://chandra.si.edu/photo/2019/quasars/

In the SR image X, GWs are visible in the vicinity of the accretion disk of the BH and GW ripples are visible at the periphery

Gravitational Waves at Quasar Q2237, Gravitational Lensing Gives Einstein Cross

Y – image from the Chandra telescope + GL
+ microlensing, X – SR image from the
MM output.

Gravitational Waves at quasars_ sdss1004

 \mathbf{Y} – image from the Chandra telescope + GL + microlensing, \mathbf{X} – SR image from the MM output.

Gravitational Waves of Two Rotating Neutron Stars Before Explosion

 \mathbf{Y} – image from the Chandra telescope, \mathbf{X} – image from the MM output

This is the result as imagined by science fiction writers.

Gravitational Waves are ripples in the fabric of space-time

Gravitational Waves During the Explosion of Two Neutron Stars with the Formation of a Black Hole

'2nstars_xray_8-26-2017'

 \mathbf{Y} is the original image from the Chandra telescope - in two-byte tif, \mathbf{X} – image from the MM output Eight stations of the EHT 2017 campaign over six geographic locations as viewed from the equatorial plane. Solid baselines represent mutual visibility on M87* (+12° declination).

Katie Bouman, 29, is the researcher who led the creation of an algorithm that allowed <u>scientists</u> to capture <u>images of a black</u> <u>hole</u> for the very first time. The National Science Foundation revealed the never-before-seen picture on April 10, 2019.

Черная Дыра Powehi

ЧД Powehi с массой 6,5 млрд Солнечных находится на расстоянии 55 млн световых лет от Земли в центре галактики M87 <u>https://www.eso.org/public/images/e</u> <u>so1907a/</u>

Credit: Physical Faculty M.V.LomonosovMSU/E.N.Terentiev et al.

Разорванные звезды образуют вихри до горизонта событий ЧД

ЧД в центре нашей галактики в расположена в созвездии Стрелец А* с массой 456 Солнечных на расстоянии около 24 тысяч световых лет от Земли

Астрономы с помощью телескопов ALMA и Chandra обнаружили облако горячей плазмы в аккреционном диске вокруг сверхмассивной черной дыры Стрелец А* в центре Млечного Пути. Облако движется вокруг черной дыры по экваториальной орбите с периодом 70 минут, см. пару зеленых полосок в X=R Y справа.

Смотрим в тень ЧД на ММ

Обсуждение

Modifications of the AF intelligent control methods can be implemented in electron microscopy, in new radar technologies, synthesized aperture locators, CT, MRT tomography, telescopes, etc.

Актуально

создание широкого спектра технических устройств со встроенными вычислителями для создания новых ИВС в 0.2-1нм Литографии с методами ГМ и ММ.

Выводы

Of course, all this will be widely used in astrophysics when analyzing data from Black Holes, etc.

Possible wide applications MM method in the production of processors.

References

1. Terentiev, E.N., Terentiev, N.E. // PROCESSES IN GEOMEDIA, 2016. №4(9) (in Russian).

2. Terentiev, E.N., Terentiev, N.E., Farshakova, I.I. // Springer International Publishing, DOI: 10.1007/978-3-319-77788-7_19C.

3. Terentiev, E.N., Shilin–Terentyev, N.E., Prikhodko, I.N., Farshakova, I.I. // SCIENTIFIC NOTES OF THE PHYSICAL FACULTY OF MOSCOW UNIVERSITY, №5 1850308, 2018 (in Russian)

4. Terentiev, E.N., Shilin–Terentyev, N.E. // SCIENTIFIC NOTES OF THE PHYSICAL FACULTY OF MOSCOW UNIVERSITY, №5 1850306, (2018) (in Russian)

5. E. N. Terentiev, I. N. Prikhodko, I. I. Farshakova, I. D. Kuznetsov, N. E. Shilin-Terentiev//Springer, Cham, doi.org/10.1007/978-3-030-11533-3_30

6. E. N. Terentiev, I. García-Magariño, N. E. Shilin-Terentyev, I. N. Prikhodko, I. I. Farshakova//Information and Computer Security (2018) Volume 1, (http://systems.enpress-publisher.com/index.php/ICS/article/view/1025)

Email: en.teren@mail.ru; сотовый: 8903 152 43 33