

Дальневосточный центр ФГБУ «Научно-исследовательский центр космической гидрометеорологии «Планета»

НЕЙРОСЕТЕВОЙ МЕТОД ВОССТАНОВЛЕНИЯ ИНТЕНСИВНОСТИ ОСАДКОВ ПО ДАННЫМ РАДИОМЕТРА АТМS

Докладчик: Филей Андрей Александрович

ИКИ РАН, 11 - 15 ноября 2024 г.

Радиометр ATMS

Радиометр ATMS является целевой аппаратурой, установленной на метеорологических КА Suomi NPP и NOAA-20/21. Прибор оснащен 22 каналами в диапазоне частот от 23 до 183 ГГц, имеет ширину обзора 2600 км, что позволяет проводить восстановление вертикальных профилей температуры и влажности, параметров облачности, осадков и характеристик подстилающей поверхности.

No	D.	Central frequency (GHz)	Bandwidth (MHz)	Quasi-polarisation	ΝΕΔΤ		
1		23.800	270	QV	0.90 K		
2		31.400	180	QV	0.90 K		
3		50.300	180	QH	1.20 K		
4		51.760	400	QH	0.75 K		
5		52.800	400	QH	0.75 K		
6		53.596 ± 0.115	170	QH	0.75 K		
7		54.400	400	QH	0.75 K		
8		54.940	400	QH	0.75 K		
9		55.500	330	QH	0.75 K		
10)	f0 = 57.290344	330	QH	0.75 K		
11		f0 ± 0.217	78	QH	1.20 K		
12	2	f0 ± 0.3222 ± 0.048	36	QH	1.20 K		
13	3	f0 ± 0.3222 ± 0.022	16	QH	1.50 K	c	
14	1	f0 ± 0.3222 ± 0.010	8	QH	2.40 K		
15	5	f0 ± 0.3222 ± 0.0045	3	QH	3.60 K		
16	6	88.2	2000	QV	0.50 K		
17	7	165.5	3000	QH	0.60 K		
18	3	183.31 ± 7.0	2000	QH	0.80 K		
19	9	183.31 ± 4.5	2000	QH	0.80 K		
20)	183.31 ± 3.0	1000	QH	0.80 K		
21	1	183.31 ± 1.8	1000	QH	0.80 K		
22	2	183.31 ± 1.0	500	QH	0.90 K		

Присутствуют на МТВЗА-ГЯ КА Метеор-М № 2-3, 2-4

Методы получения интенсивности осадков

¹*Kummerow C.D., Giglio L.* A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description // J. Appl. Meteorol. 1994. V. 33(1). P. 3–18. DOI: 10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2

²*Iturbide-Sanchez F. et al.* Assessment of a variational inversion system for rainfall rate over land and water surfaces // IEEE Trans. Geosci. Remote Sens. 2011. V. 49(9). P. 3311–3333. DOI: 10.1109/TGRS.2011.2119375

³Sanò P., Panegrossi G., Casella D., Marra A.C., Di Paola F., Dietrich S. The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars // Atmos. Meas. Tech. 2016. V. 9. P. 5441–5460. DOI: 10.5194/amt-9-5441-2016

Архитектура нейронной сети

Регрессия

Формирование обучающей выборки

Реанализ ECMWF ERA5 за 2022 г.

N⁰	Поле		Поля FCMWF FRA5	Дополнительная информация:
1	Географические координаты			• Высота рельефа
2	Температура на высоте 2 метров н.у.м			• Зенитный угод спутника
3	Давление на высоте 2 метров н.у.м			• Маска суща/вода
4	Отношение смеси водяного пара на высоте 2 метров н.у.м			• Маска суша, вода
5	Компоненты векторов ветра U и V на высоте 10 метров н.у.м			- таска спетулед
6	Температура подстилающей поверхности			
	Вертикальный профиль			
7	Температура		*	
8	Отношение смеси водяного пара			RTTOV:
9	Давление		• RTT	OV-SCAT
10	Удельное содержание жидкой воды в облаках		SEM2	
11	Удельное содержание льда в облаках		TEM-6	
12	Удельное содержание жидкой воды в виде осадков			
13	Удельное содержание снега в виде осадков			
14	Доля облачности		Обуча	ающая Выборка:
			 Смоделиров каналах ATMS Интенсивно Маска суша, Географичес Маска снег/ Зенитный уг 	сть осадков /вода кая широта лед ол спутника

Балансировка обучающей выборки для классификации

Классы интенсивности:

- 1) Слабые (0.25 2.5 мм/ч)
- 2) Умеренные (2.5 8 мм/ч)
- 3) Сильные(8 15 мм/ч)
- 4) Очень сильные (> 15 мм/ч)

Четыре регрессионных модели

Оптимальный выбор входных параметров

	Суша	Вода			
Каналы	№ 3-6, 16-22	№ 0-6 <i>,</i> 16-22			
Разности	D _{18,22} ; D _{18,20} ; D _{20,22}				
Вспомогательные	ательные Широта				
параметры Зенитный угол спутника					
D — разность яркостных температур					

ВАЛИДАЦИЯ

Спутниковые данные

1) Радиометр ATMS КА NOAA-20

Исходные Данные

1) Интенсивность осадков, восстановленная с помощью представленного нейросетевого алгоритма.

Область интереса и временной интервал

- 1) Весь земной шар
- 2) Ограничение по широте -70 до 70 градусов
- 3) Отдельные сроки по месяцам в течение 2023 г.

Независимые данные Валидации

1) Интенсивность осадков, восстановленная с помощью статистическо-физического алгоритма программного комплекса MIRS (<u>www.avl.class.noaa.gov</u>)

2) Интенсивность осадков, восстановленная с помощью статистическо-физического алгоритма GPROF (www.gpm1.gesdisc.eosdis.nasa.gov).

Метрики

POD (вероятность обнаружения) указывает на долю пикселей, наблюдаемых по фактическим данным, и которые были верно классифицированы нейросетевой моделью. FAR (коэффициент ложной тревоги) показывает долю пикселей, соответствующих наличию осадков по нейросетевой модели, но фактически отсутствующих.

Сравнение с MIRS

Вода

Суша

Оценка точности

Подстилающая	Кол-во	POD	FAR	CSI	RMSE,	Bias,	R
поверхность	точек				мм/ч	мм/ч	
Вода	191466	0.928	0.072	0.866	0.78	0.08	0.91
Суша	67290	0.874	0.126	0.776	0.84	-0.46	0.93

10

Сравнение с MIRS

APNA (Advanced Precipitation Neural Algorithm) – разработанный алгоритм

Сравнение с GPROF

Вода

Суша

Оценка точности

Подстилающая поверхность	Кол-во точек	POD	FAR	CSI	RMSE, MM/4	Bias, мм/ч	R
Вода	66176	0.871	0.129	0.772	1.27	-0.39	0.87
Суша	40804	0.865	0.135	0.763	0.9	-0.56	0.83

Сравнение с GPROF

1) Подтверждена работоспособность представленной нейросетевой методики восстановления интенсивностей осадков.

2) Получаемые карты могут служить в качестве источника информации об осадках при ограниченности непосредственных наземных измерений.

3) Необходимо продолжить исследования на предмет применение методики в зимнее время года при наличии в области наблюдения снега и льда.

4) Методика может быть адаптирована для измерений российского микроволнового радиометра МТВЗА-ГЯ.

СПАСИБО ЗА ВНИМАНИЕ

Дальневосточный центр ФГБУ «НИЦ «Планета» Россия, г. Хабаровск, ул. Ленина, д. 18 тел.: 8-(4212) 21-43-11 факс: 8-(4212) 21-40-07 e-mail: niokr@dvrcpod.ru https://www.dvrcpod.ru