

Двадцать вторая международная конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА» 11-15 ноября 2024 г.

Развитие методов прогноза смерчеопасных ситуаций и алгоритмов распознавания конвективных систем с возможными смерчами вблизи Черноморского побережья России

О.В. Калмыкова, к.ф.-м.н. ФГБУ «НПО «Тайфун», г. Обнинск

Хронология работы

ЦНТП Росгидромета на 2017-2019 гг.

Тема: Разработка технологии прогнозирования возникновения смерчеопасных ситуаций в Российской акватории Черного моря

- **2017 г**: разработка методики оценки смерчеопасности и автоматизированной технологии расчета по методике
- 2018 г: авторские испытания технологии
- **2019 г**: независимые испытания технологии (СЦГМС ЧАМ, г. Сочи, Северо-Кавказское УГМС, г. Ростов-на-Дону)

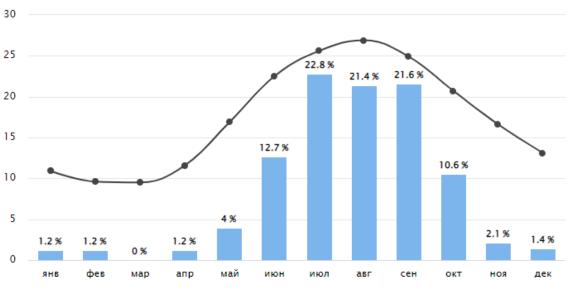
НИТР Росгидромета на 2020-2024 гг.

Тема: Развитие методов прогноза смерчеопасных ситуаций и алгоритмов распознавания потенциальных смерчевых облаков вблизи Черноморского побережья Краснодарского края и Республики Крым

- **2020 г:** рассмотрение результатов испытаний технологии на заседании Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам, принято решение о ее внедрении
- **2021 г:** усовершенствование метода краткосрочного прогноза смерчеопасных ситуаций в теплый период года
- 2022 г: разработка новой схемы распознавания потенциальных смерчевых систем
- **2023 г:** разработка нового метода краткосрочного прогноза смерчеопасных ситуаций в холодный период года
- 2024 г: разработка веб-интерфейса для просмотра базы данных о черноморских смерчах

Смерчи над Черным морем

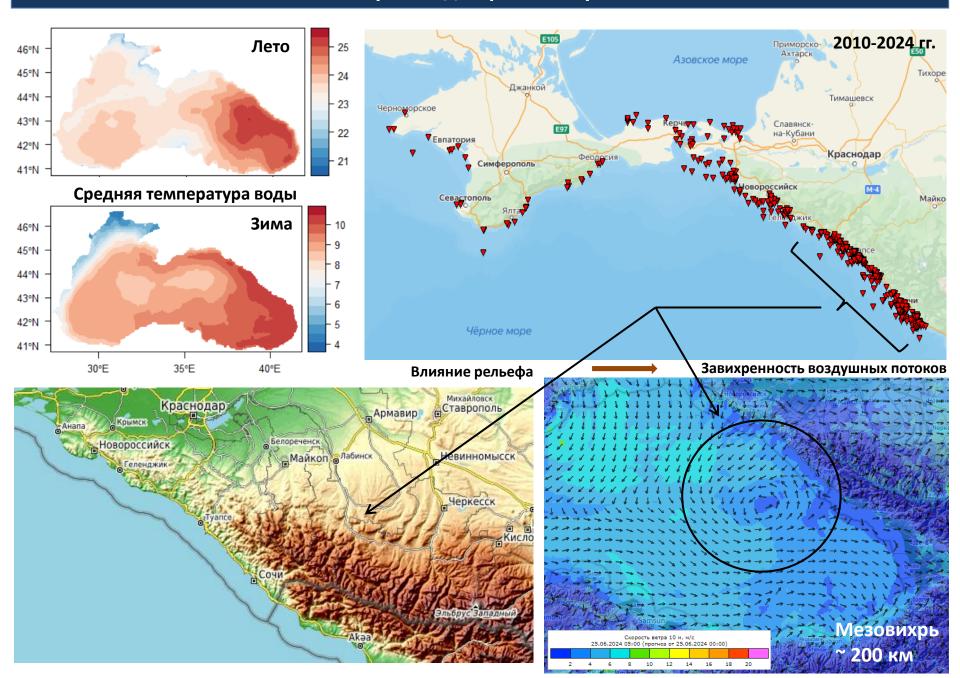




Результаты обследования районов возникновения и распространения гидрометеорологических явлений:

Разломана пластиковая пляжная мебель, перевёрнуты и перемещены прогулочные катамараны, повален 3D забор - из бетонного основания, вывернуты металлические опоры, выбиты стекла в оконных рамах, разорвано напольное резиновое покрытие на причале. Катер весом около 7 тонн в результате перемещения потоками воздуха получил пробоины в днище.

Смерчи над Черным морем



Процентное соотношение числа дней со смерчами в 2010-2024 гг.

◆ Средняя температура воды в Черном море вблизи г. Сочи, °С

Смерчи над Черным морем

Методика прогноза смерчеопасности

1. Выделение смерчеопасных областей акватории с различными зонами риска (зеленая зона — риск отсутствует, желтая — повышенный риск, оранжевая — высокий риск, красная — крайне высокий риск) с использованием модельных прогностических данных.

Основные методы: региональный индекс смерчеопасности WRI (для теплого и холодного периодов), номограмма Szilagyi, известные индексы конвективной неустойчивости.

Single Services

Single Services

Mapping Services

Single Services

Singl

2. Распознавание конвективных систем с возможными смерчами на базе данных дистанционных наблюдений (спутниковые, радиолокационные) в том числе с учетом ранее построенного прогноза смерчеопасных областей.

Основные методы: схема идентификации и прослеживания систем, <u>пороговая схема</u>, **модели машинного обучения**.

Mascernatural cooperts sometiment on process, since (36.06.2023 04:00)

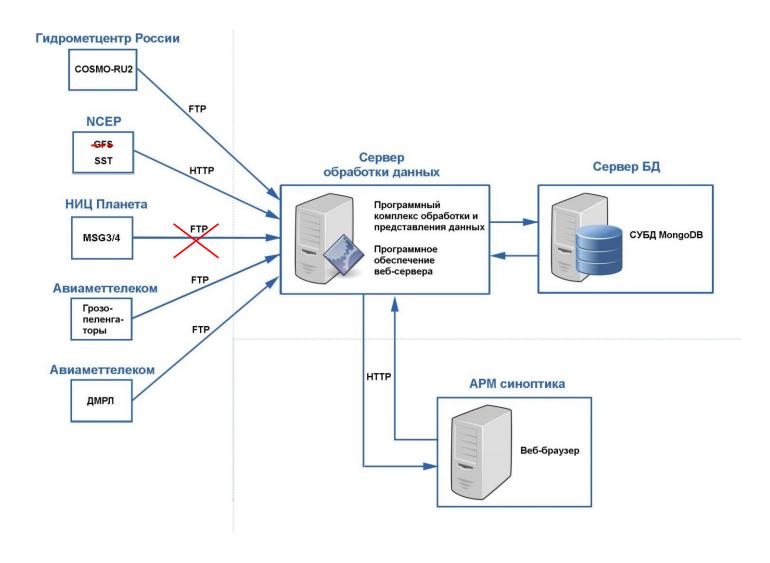
Mascernatural cooperts sometiment on process, since (36.06.2023 04:00)

3. Определение смерчеопасных участков побережья, в том числе периодов времени, в течение которых на рассматриваемых участках возможно формирование смерчей.

Основной метод: анализ прогноза смерчеопасных областей.

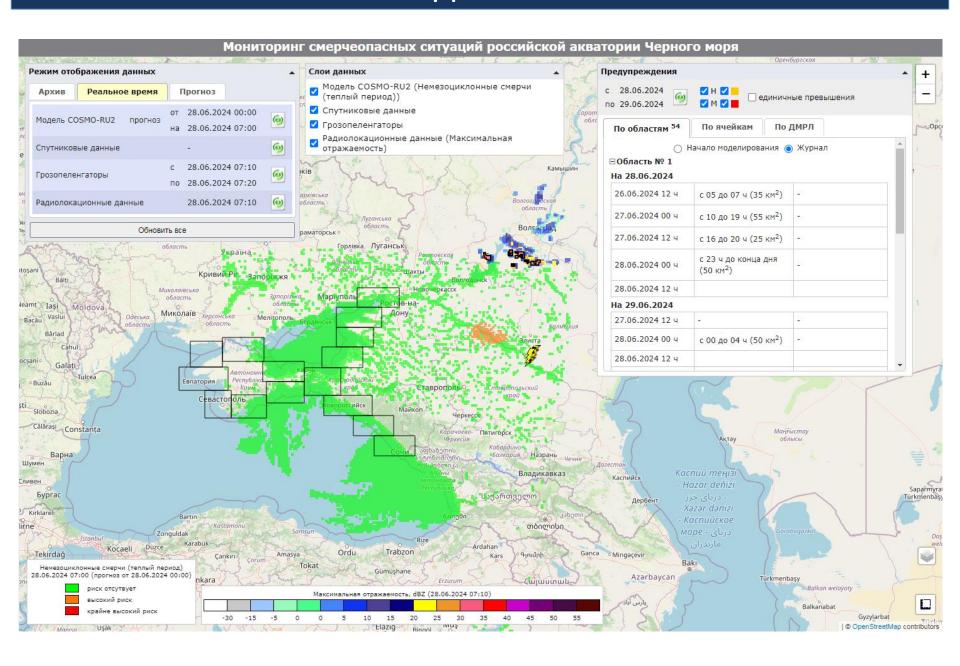
⊡Область № 1

Ha	06.	06.	20	23
,				


,	Ha U0.U0.2U23	
,	04.06.2023 12 ч	с 03 до 07 ч (15 км²)
	05.06.2023 00 ч	с 00 до 13 ч (30 км²) с 16 до 19 ч (20 км²)
	05.06.2023 12 ч	с 01 до 03 ч (10 км²) с 06 до 13 ч (5 км²) с 15 до 20 ч (30 км²) с 22 ч до конца дня (20 км²)
	06.06.2023 00 ч	с 00 до 20 ч (990 км²)
	06.06.2023 12 ч	с 12 ч до конца дня (1790 км²)

⊟Область № 2

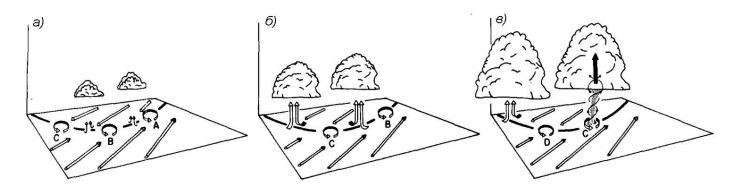
Ha 06.06.2023


04.06.2023 12 ч	-
05.06.2023 00 ч	-
05.06.2023 12 ч	-
06.06.2023 00 ч	-
06.06.2023 12 ч	с 21 ч до конца дня (135 км²)

Автоматизированная технология расчета по методике

В настоящее время блок обработки спутниковых данных не функционирует в связи с введенными с 2022 г. ограничениями на частоту приема данных для российских потребителей (каждый час).

Веб-интерфейс технологии


Усовершенствование регионального индекса смерчеопасности WRI

«Ингредиенты» немезоциклонного смерчегенеза:

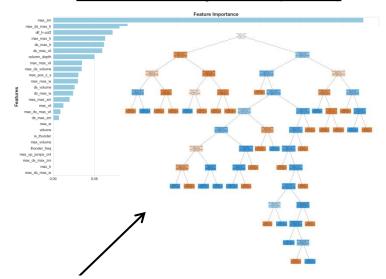
- сильная конвективная неустойчивость
 - ✓ DT_1 разность температур поверхности моря и воздуха на уровне 1 км (${}^{\circ}$ C) (${}^{\uparrow}$)
 - ✓ глубина конвекции (км) (↑)
- ресурс для развития конвекции
 - ✓ относительная влажность воздуха, осредненная в слое 0–1 км (%) (↑)
- завихренность в приводном слое
 - ✓ горизонтальный сдвиг ветра на уровне 10 м (⁰/км) (↑)
- невозмущенное поле ветра
 - ✓ DU_1 абсолютное значение разности скоростей ветра на уровнях 10 м и 1 км (м/с) (↓)
 - ✓ S_1 сдвиг ветра, осредненный в слое 0–1 км (м/(с·км)) (↓)

$$WRI_{21} = \frac{1}{5} * \left[\frac{(DT_1 \ge 8.5) & (CD \ge 6)}{(DT_1 \ge 6) & (CD \ge 9)} + (DD_{10} \ge 6) + (RH_1 \ge 76) + (DU_1 \le 3.5) + (S_1 \le 7.5) \right]$$

Новая формула расчета индекса позволяет уменьшить количество неспрогнозированных случаев смерчей на 17%, за счет дополнительного учета особенностей возникновения смерчеопасных ситуаций в условиях вынужденной конвекции, обусловленной прохождением атмосферных фронтов.

Разработка моделей классификации конвективных систем

1. Идентификация


2. Прослеживание

3. Расчет характеристик

Модели классификации (2022 г.)

На основе подхода к машинному обучению построены три модели классификации конвективных систем, использующие в качестве параметров значения радиолокационных характеристик систем и скорости их изменения: случайный лес (RF), дерево решений (DT), логистическая регрессия (LR).

Пороговая схема (2018 г.)

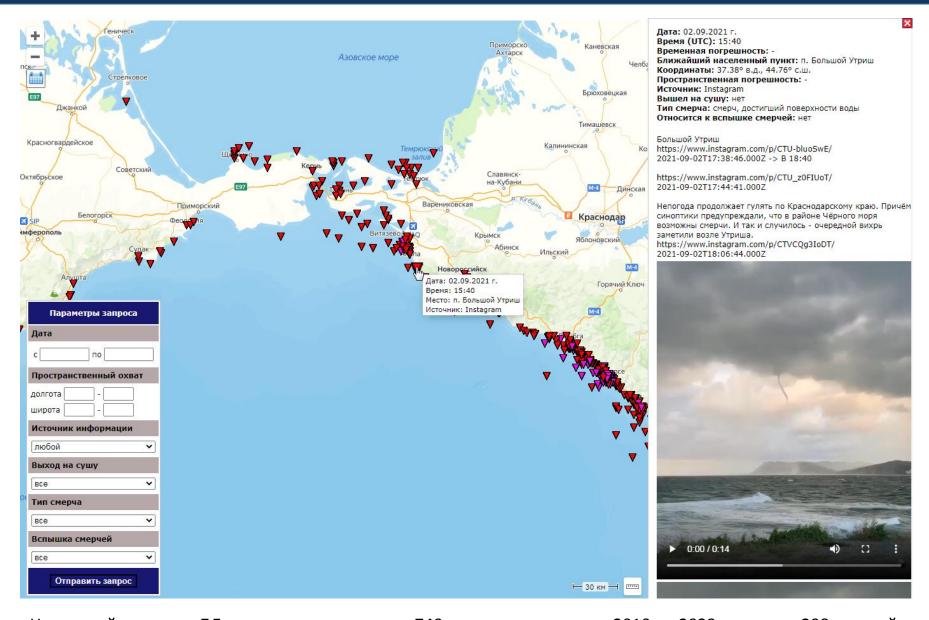
$$R = \begin{cases} dBZ_m \ge 40 \ dBZ \\ H_{B\Gamma O} \ge 10 \ \kappa M \end{cases}$$

$$VIL \ge 1 \ \kappa \varepsilon / M^2$$

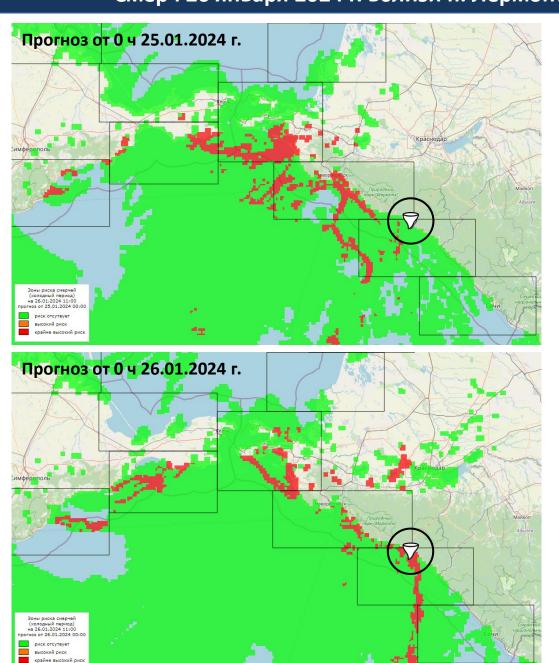
$$C \ g \in [oca\partial \kappa u, ливень, гроза]$$

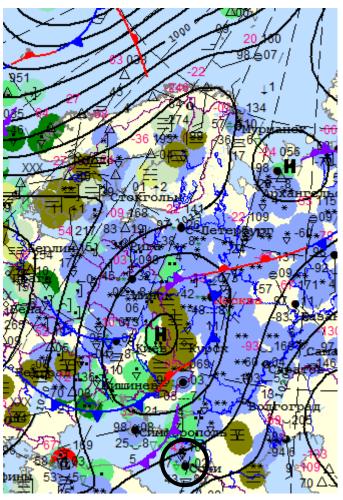
Модели относят систему к одному из двух классов: смерчеопасная система (класс W_+) и система, для которой возникновение смерчей не ожидается (класс W_-). Отнесение системы к классу W_+ следует рассматривать как прогнозируемую в пределе на ближайшие два часа опасность образования смерчей.

Разработка варианта расчета индекса WRI для холодного периода года


В состав WRI21 входят два сезонных предиктора: DT1 и CD. Разность температур DT1 в холодный период будет больше, чем в теплый. Для глубины конвекции CD наоборот — в теплый период смерчевые облака хорошо развиты по вертикали, в холодный период следует ожидать уменьшения их вертикальной протяженности. В новом индексе WRI $_{\rm W}$ для холодного периода используется новый предиктор поля ветра: W $_{\rm I}$ — скорость ветра, осредненная в нижнем слое 0-1 км.

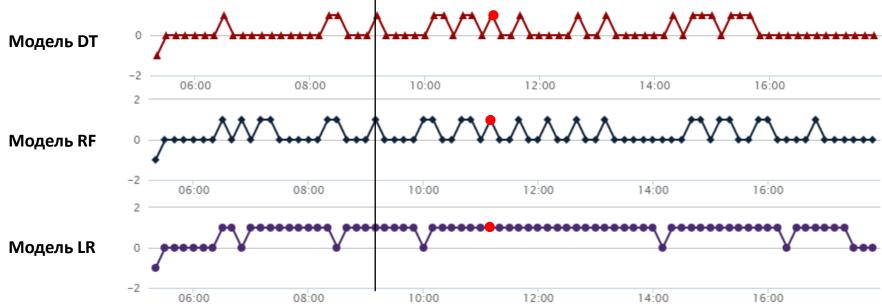
$$WRI_{W} = \frac{1}{5} * [(DT_{1} \ge 10) + (DD_{10} \ge 3) + (RH_{1} \ge 70) + (CD \ge 2) + (W_{1} \le 10)]$$


Индекс WRI_W позволяет формировать более качественный прогноз смерчеопасности по сравнению с прогнозом по номограмме Szilagyi, как в плане предупрежденности смерчей, так и в плане более точной локализации зон риска их возникновения.

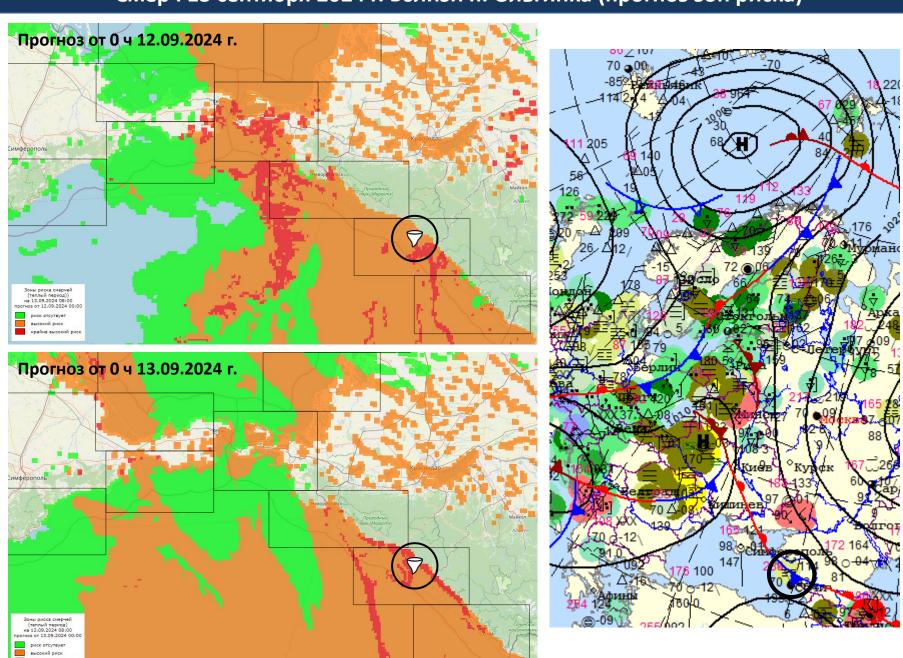

База данных черноморских смерчей

На данный момент в БД содержатся сведения о 740 смерчах за период с 2010 по 2023 гг., из них 298 записей из официальных донесений, 442 записи – сообщения очевидцев.

Смерч 26 января 2024 г. вблизи п. Лермонтово (прогноз зон риска)



Смерч 26 января 2024 г. вблизи п. Лермонтово (классификация системы)


Смерч 26 января 2024 г. вблизи п. Лермонтово (журнал опасности)

Штормовое предупреждение


ВЕЧЕРОМ И ДО КОНЦА СУТОК 25 ЯНВАРЯ, В ТЕЧЕНИЕ СУТОК 26 ЯНВАРЯ МЕСТАМИ В КРАСНОДАРСКОМ КРАЕ (ИСКЛЮЧАЯ МУНИЦИПАЛЬНОЕ ОБРАЗОВАНИЕ ГОРОД-КУРОРТ СОЧИ) ОЖИДАЕТСЯ КОМПЛЕКС МЕТЕОРОЛОГИЧЕСКИХ ЯВЛЕНИЙ СИЛЬНЫЙ ДОЖДЬ, СИЛЬНЫЙ ДОЖДЬ СО СНЕГОМ, В СОЧЕТАНИИ С ГРОЗОЙ И СИЛЬНЫМ ВЕТРОМ С ПОРЫВАМИ 20-22 М/С. НА РЕКАХ, МАЛЫХ РЕКАХ И ВОДОТОКАХ ЮГО-ЗАПАДНОЙ И ЮГО-ВОСТОЧНОЙ ТЕРРИТОРИИ КРАЯ (КРЫМСКИЙ, АБИНСКИЙ, СЕВЕРСКИЙ, АПШЕРОНСКИЙ, ТЕМРЮКСКИЙ РАЙОНЫ, МО ГОРЯЧИЙ КЛЮЧ) И ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ (МО ГЕЛЕНДЖИК, ТУАПСИНСКИЙ РАЙОН) ОЖИДАЮТСЯ ПОДЬЕМЫ УРОВНЕЙ ВОДЫ МЕСТАМИ С ПРЕВЫШЕНИЕМ НЕБЛАГОПРИЯТНЫХ ОТМЕТОК.

Смерч 13 сентября 2024 г. вблизи п. Ольгинка (прогноз зон риска)

Смерч 13 сентября 2024 г. вблизи п. Ольгинка (классификация системы)

Смерч 13 сентября 2024 г. вблизи п. Ольгинка (журнал опасности)

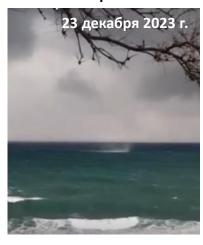
⊡Область № 1		⊡ Область № 2		⊡Область № 3		⊡Область № 4	
Ha 12.09.2024		Ha 12.09.2024		Ha 12.09.2024		Ha 12.09.2024	
10.09.2024 12 ч	-	10.09.2024 12 ч	-	10.09.2024 12 ч	-	10.09.2024 12 ч	-
11.09.2024 00 ч	-	11.09.2024 00 ч	-	11.09.2024 00 ч	-	11.09.2024 00 ч	-
11.09.2024 12 ч	с 22 ч до конца дня (385 км ²)	11.09.2024 12 ч	с 23 ч до конца дня (505 км²)	11.09.2024 12 ч	с 22 ч до конца дня (1050 км ²)	11.09.2024 12 ч	с 15 до 20 ч (80 км ²) с 23 ч до конца дня
12.09.2024 00 ч	с 19 ч до конца дня (1315 км ²)	12.09.2024 00 ч	с 20 ч до конца дня (2330 км ²)	12.09.2024 00 ч	с 23 ч до конца дня (1205 км ²)	12.09.2024 00 ч	(570 км ²) с 23 ч до конца дня
12.09.2024 12 ч	с 17 ч до конца дня (525 км²)	12.09.2024 12 ч	с 21 ч до конца дня (835 км²)	12.09.2024 12 ч	с 22 ч до конца дня (730 км ²)	12.09.2024 12 4	(950 км ²)
Ha 13.09.2024	<u>'</u>	Ha 13.09.2024	, .	Ha 13.09.2024		Ha 13.09.2024	
11.09.2024 12 ч	с 00 до 07 ч (385 км²)	11.09.2024 12 ч	с 00 до 07 ч (505 км²)	11.09.2024 12 ч	с 00 до 07 ч (1050 км ²)	11.09.2024 12 ч	с 00 до 07 ч (570 км ²)
12.09.2024 00 ч	с 00 до 16 ч (1315 км ²)	12.09.2024 00 ч	с 00 до 12 ч (2330 км²)	12.09.2024 00 ч	с 00 до 11 ч (1205 км²)	12.09.2024 00 ч	с 00 до 16 ч (950 км ²)
	с 00 до 14 ч (525 км²) 12.09.2024 12 ч с 19 ч до конца дня (275 км²)	12.09.2024 12 4	с 00 до 09 ч (835 км²) с 11 до 15 ч (340 км²) с 23 ч до конца дня	12.09.2024 12 ч	с 00 до 13 ч (730 км ²)	12.09.2024 12 ч	с 07 до 16 ч (310 км ²)
12.09.2024 12 4				13.09.2024 00 ч	с 00 до 15 ч (225 км ²)	13.09.2024 00 ч	с 13 до 15 ч (5 км ²)
13.09.2024 00 ч	весь день (1250 км ²)		(180 км ²)	13.09.2024 12 ч	с 12 до 18 ч (240 км ²)	13.09.2024 12 ч	-
	с 12 ч до конца дня	13.09.2024 00 ч	с 00 до 15 ч (1035 км ²)	Ha 14.09.2024		Ha 14.09.2024	
13.09.2024 12 ч	(570 км ²)		, ,	12.09.2024 12 ч	с 05 до 07 ч (35 км ²)	12.09.2024 12 ч	-
Ha 14.09.2024		13.09.2024 12 ч	с 12 до 14 ч (355 км ²) с 20 ч до конца дня	1210312024 12 .	С 05 до 07 ч (35 км.)	13.09.2024 00 ч	-
12.09.2024 12 ч	с 00 до 03 ч (275 км²)	15,05,2024 12 4	(1035 км ²)	13.09.2024 00 ч	с 07 до 12 ч (100 км ²)	13.09.2024 12 ч	-
		Ha 14.09.2024	<u>'</u>	13.09.2024 12 ч	с 05 до 11 ч (190 км ²)	14.09.2024 00 ч	с 01 до 03 ч (45 км ²)
13.09.2024 00 ч	с 00 до 02 ч (335 км ²) с 08 до 12 ч (300 км ²)	12.09.2024 12 ч	с 00 до 07 ч (180 км ²)	14.09.2024 00 ч	-	14.09.2024 12 ч	-
13.09.2024 12 ч	с 00 до 02 ч (570 км²)	13.09.2024 00 ч	с 03 до 05 ч (30 км ²)	14.09.2024 12 ч	-		
14.09.2024 00 ч		- 15.05.2024 00 4	с 07 до 12 ч (1090 км ²)				
	-	13.09.2024 12 ч	с 00 до 12 ч (1035 км ²)				
14.09.2024 12 4	-						

Штормовое предупреждение

14.09.2024 00 ч 14.09.2024 12 ч

В ПЕРИОД 12-13 Ч, ДО КОНЦА ДНЯ И ВЕЧЕРОМ 13 СЕНТЯБРЯ НАД ЧЕРНЫМ МОРЕМ В РАЙОНЕ ДЖУБГА-МАГРИ ИМЕЕТСЯ ОПАСНОСТЬ ФОРМИРОВАНИЯ СМЕРЧЕЙ.

Показатели качества прогноза смерчеопасности в 2017-2024 гг. (теплый период)



Тестирование индекса WRIw (декабрь 2023 г. – апрель 2024 г.)

Спрогнозированные случаи

Индекс WRIw + номограмма

Индекс WRIw

Не спрогнозированные случаи

10 ДЕКАБРЯ 2023 ГОДА В ПЕРИОД С 08.55 до 09.15 ЧАСОВ НА УЧАСТКЕ МАГРИ ВЕСЕЛОЕ (Г.СОЧИ) ПО ДАННЫМ СОТРУДНИКА ПЛЯЖА САНАТОРИЯ РАДУГА НА ЗНАЧИТЕЛЬНОМ УДАЛЕНИИ ОТ БЕРЕГА НАБЛЮДАЛИСЬ ЗАРОЖДАЮЩИЕСЯ СМЕРЧИ НАД МОРЕМ, **НЕ ДОСТИГШИЕ ПОВЕРХНОСТИ** ВОДЫ.

6 ФЕВРАЛЯ 2024 Г. ПО ДАННЫМ РАБОТНИКОВ ПЛЯЖА САНАТОРИЙ СОЧИ В 11.20-11.40 НАБЛЮДАЛСЯ ЗАРОЖДАЮЩИЙСЯ СМЕРЧ, **НЕ ДОСТИГШИЙ ПОВЕРХНОСТИ ВОДЫ**.

Индекс WRIw

.	Набл	6		
Прогноз	Явление	Без явления	Сумма	
Явление	2	13	15	
Без явления	2	136	138	
Сумма	4	149	153	

Homorpamma Szilagyi

	Набл	Сумма	
Прогноз	Явление Без явлени		
Явление	1	10	11
Без явления	3	139	142
Сумма	4	149	153

	WRIw	Номо- грамма
Общая оправдываемость прогноза	90%	92%
Оправдываемость с явлением	13%	9%
Оправдываемость без явления	99%	98%
Предупрежденность с явлением	50%	25%
Предупрежденность без явления	91%	93%
Доля ложных прогнозов	87%	91%
Критерий Пирси-Обухова	0.413	0.183
Критерий Багрова-Хайдке	0.177	0.099
Индекс экстремальной зависимости	0.557	0.322

Тестирование моделей классификации

Схема тестирования:

- Подсчет общего количества конвективных систем, возникших у Черноморского побережья России (над морем) в зоне охвата ДМРЛ-С Краснодар и Сочи (Ахун).
- Анализ ложных срабатываний моделей: подсчет для каждой модели количества систем, которые как минимум дважды за время их жизни были отнесены к классу смерчеопасных.
- Анализ динамики присвоенных по моделям классов смерчеопасности для реальных систем со смерчами: успешным считается отнесение системы к классу смерчеопасных до момента регистрации смерча, но не ранее 2 часов до этого момента.
- Формирование таблиц сопряженности и расчет показателей качества работы моделей.
- Для сравнения проводился расчет показателей качества работы ранее предложенной пороговой схемы (ПС).

Тестирование моделей классификации

июль – октябрь 2023

Класс	Смерчеобразу- ющая система		Bcero
DT	да	нет	Beero
W ₊	18	409	427
W_	3	3616	3619
Всего	21	4025	4046

Класс	Смерчеобразу- ющая система		Bcero
RF	да	нет	500.0
W ₊	15	614	629
W_	6	3411	3417
Всего	21	4025	4046

Класс		чеобразу- я система	Bcero
LR	да	нет	200.0
W₊	19	2382	2401
W_	2	1643	1645
Всего	21	4025	4046

Класс	Смерчеобразу- ющая система		Всего
ПС	да	нет	
W ₊	15	1099	1114
W_	6	2926	2932
Всего	21	4025	4046

ноябрь 2023 – апрель 2024

Класс	Смерчеобразу- ющая система		Bcero
DT	да	нет	200.0
W₊	4	1090	1094
W_	0	6190	6190
Всего	4	7280	7284

Класс RF	Смерчеобразу- ющая система		Всего
	да	нет	200.0
W ₊	3	939	942
W_	1	6341	6342
Bcero	4	7280	7284

	Класс LR	•	чеобразу- я система	Всего
		да	нет	300.0
	W ₊	4	2873	2877
	W_	0	4407	4407
	Всего	4	7280	7284

Класс	Смерчеобразу- ющая система		Всего
ПС	да	нет	
W ₊	1	77	78
W_	3	7203	7206
Всего	4	7280	7284

июль – октябрь 2024

Класс	Смерчеобразу- ющая система		Всего
DT	да	нет	260.0
W ₊	33	828	861
W _	13	8749	8762
Всего	46	9577	9623

Класс	•	чеобразу- я система	Bcero
RF	да	нет	300.0
W ₊	28	1020	1048
W_	18	8557	8575
Всего	46	9577	9623

Класс	•	чеобразу- я система	Bcero
LR	да	нет	250.5
W ₊	42	4632	4674
W_	4	4945	4949
Всего	46	9577	9623

Класс	Смерчеобразу- ющая система		Bcero
ПС	да	нет	
W ₊	34	1930	1964
W _	12	7647	7659
Всего	46	9577	9623

Тестирование моделей классификации

Модель

Предупрежденность с явлением, %
Вероятность ложного обнаружения, %
Критерий Пирси-Обухова
Критерий Багрова-Хайдке
Индекс экстремальной зависимости

Модель DT			
ТП1	ΧП	ТП2	
86	100	72	
10	15	9	
0.756	0.850	0.631	
0.071	0.006	0.064	
0.874	1	0.761	

Модель RF			
ТП1	ΧП	ТП2	
71	75	61	
15	13	11	
0.562	0.621	0.502	
0.037	0.005	0.042	
0.696	0.754	0.637	

Модель LR			
ТП1	ΧП	ТП2	
91	100	91	
60	40	48	
0.313	0.605	0.429	
0.006	0.002	0.008	
0.680	1	0.777	

Пороговая схема			
ТП1	ΧП	ТП2	
71	25	74	
27	1	20	
0.441	0.239	0.538	
0.016	0.023	0.025	
0.588	0.533	0.683	

TП1: июль – октябрь 2024 г.

XП: ноябрь 2023 г. – апрель 2024 г.

TП2: май – октябрь 2024 г.

- В теплые периоды смерчи чаще всего (в 60-70% случаев) возникали из систем с продолжительностью жизни более четырех часов. Для таких систем модели классификации и пороговая схема выявляли опасность смерчеобразования за 1-2 ч до возникновения смерча.
- По сравнению с ранее разработанной пороговой схемой классификации конвективных систем классификация на основе моделей машинного обучения показывает более высокие результаты по предупрежденности (заблаговременному отнесению системы к классу смерчеобразующих систем), позволяя при этом достичь более низкой доли ложных срабатываний (за исключением модели LR). В целом судя по комплексному критерию успешности работы моделей индексу экстремальной зависимости, новые модели, в которых в том числе учтены особенности процессов смерчеобразования, являются эффективной заменой более простой пороговой схемы, особенно в холодный период, когда используемые в этой схеме пороги радиолокационных характеристик систем не всегда достигаются.
- Среди трех моделей наилучшие результаты с точки зрения соотношения предупрежденности смерчеобразующих систем и доли ложных срабатываний (индекс экстремальной зависимости) показывает модель DT. Из условных 10 систем со смерчами она позволяет заблаговременность распознать 7-8 систем. При этом вероятность ложного распознавания не превышает 15%.

<u>Заключение</u>

- В нашей стране наиболее смерчеопасным регионом является Черноморское побережье. Смерчи над Черным морем в основной своей массе возникают в теплый период года с мая по октябрь. В холодный период они также возможны, но частота их возникновения существенно ниже, чем в теплый. Смерчи могут выходить на сушу в течение всего года. Смерчи распределены по побережью неравномерно, чаще всего их фиксируют на участке от Туапсе до Сочи (влияние рельефа).
- На базе НПО «Тайфун» в оперативном режиме с 2017 г. функционирует технология прогноза смерчеопасности вблизи Черноморского побережья России. Это <u>первое</u> известное в практике Росгидромета решение по построению в автоматическом режиме прогнозов смерчеобразования в прибрежной акватории Черного моря. Технология доказала свою состоятельность по результатам независимых испытаний в 2019 г. В настоящее время она используется в оперативной работе СЦГМС ЧАМ и Северо-Кавказского УГМС.
- С 2020 г. проводятся работы по усовершенствованию методики прогноза смерчеопасности по двум основным направлениям:
 - ✓ Повышение качества краткосрочного прогноза. Разработана усовершенствованная версия расчета регионального индекса смерчеопасности WRI₂₁ для теплого периода года. Предупрежденность смерчей на его основе варьируется от 75 до 92%. Взамен ранее использованной номограммы Szilagyi разработан вариант расчета индекса WRI№ для холодного периода года, который позволяет более точно локализовать зоны риска смерчей и предупреждать большее их количество. В вопросах прогноза смерчеопасности пока остается нерешенной проблема высокой доли ложных прогнозов, она, как известно, носит глобальный характер (в США значение этого показателя доходит до 75%!).
 - ✓ Повышение качества распознавания смерчеобразующих систем. Взамен ранее используемой пороговой схемы на базе подхода к машинному обучению построены модели классификации конвективных систем. Первые результаты их работы выглядят вполне приемлемыми: из 10 систем со смерчами заблаговременно помечаются как смерчеопасные 7-8 систем, при этом заблаговременность в пределе может доходить до 2 ч. Как и в случае с прогнозом, присутствуют ложные срабатывания. По полученным оценкам вероятность такого исхода для наилучшей модели может варьироваться от 9 до 15%.

