Расширение и уточнение параметров спектральных линий углекислого газа и ацетилена в базе данных HITRAN2024

Кочанов Р.В., Люлин О.М., Перевалов В.И.

Институт оптики атмосферы им. В.Е. Зуева СО РАН, Томск, Россия

Глобальное моделирование центров и интенсивностей спектральных линий

Моделирование центров и интенсивностей спектральных линий 12 C 16 O₂ было выполнено в рамках глобальных моделей эффективного гамильтониана и оператора эффективного дипольного момента (Teffo J.L. et al. JMS 1992;156:48–64, Perevalov V.I. et al. JMS 1995;171:435–452)

Таблица 1. Статистика подгонки параметров эффективного гамильтониана.

Число литературных источников	108
Число входных данных	39061
Число спектральных линий	24951
Число параметров	162
Взвешанное стандартное отклонение	1.62
Средне квадратичное отклонение	1.52×10 ⁻³ см ⁻¹

Таблица 2. Фрагмент статистики подгонки по источникам

Источник	Число линий	J_{min}	J _{max}	Эксп. неопр. *) см ⁻¹	<i>СКО</i> **) см ⁻¹	Спектральная область, полосы
Lyulin et al. [1]	99	0	49	0.007	0.005	718 нм
Borkov et al. [2]	83	0	49	0.005	0.005	660 нм
Ritter et al. [3]	21	186	251	0.003	0.004	00011-00001 4.2 мкм
Hu et al. [4]	30	2	71	1.6×10 ⁻⁷	5.6×10 ⁻⁷	60025 кол. сост. 810 нм
Wu et al. [5]	71	0	72	1.0×10 ⁻⁷	1.2×10 ⁻⁷	30012-00001 1.6 мкм 30013-00001 1.6 мкм
Reed et al. [6]	44	0	42	3.3×10 ⁻⁸	3.8×10 ⁻⁸	30012-00001 1.6 мкм 30013-00001 1.6 мкм
Tan et al. [7]	18	1	42	2.3×10 ⁻⁸	7.5×10 ⁻⁸	30012-00001 1.6 мкм
Jiang et al. [8]	37	0	69	2.3×10 ⁻⁷	4.0×10 ⁻⁷	30012-00001 1.6 мкм
Fleurbaey et al. [9]	106	0	74	1.1×10 ⁻⁷	3.6×10 ⁻⁷	20012-00001 2 мкм 20013-00001 2 мкм
Birk et al. [10]	1381	0	75	0.0004	0.0008	1.7—1.4 мкм

Эксп. неопр. ^{*)} - средняя неопределенность (1о) экспериментальных центров линий. *СКО* ^{**)} – средне квадратичное отклонение подгонки.

•Фрагмент списка источников

•[1] Lyulin OM, Solodov AM, Solodov AA, Petrova TM, Perevalov VI. The absorption bands of ¹²CO₂ near 718 nm. J Quant Spectrosc Radiat Transf 2023;303:108595. <u>https://doi.org/10.1016/j.jqsrt.2023.108595</u>.

•[2] Borkov YG, Solodov AM, Solodov AA, Petrova TM, Perevalov VI. The first observation of the ¹²C¹⁶O₂ absorption bands near 660 nm. J Mol Spectrosc 2023;397: 111843. <u>https://doi.org/10.1016/j.jms.2023.111843</u>.

•[3] Ritter ME, DeSouza SA, Ogden HM, Michael TJ, Mullin AS. Transient IR spectroscopy of optically centrifuged CO2 (R186–R282) and collision dynamics for the *J*=244–282 states. Faraday Discuss May 2024. PMID: 38766993. <u>https://doi.org/10.1039/d3fd00179b</u>.

•[4] Hu CL, Perevalov VI, Cheng CF, Hua TP, Liu AW, Sun YR, Wang J, Hu SM. Optical–optical doubleresonance absorption spectroscopy of molecules with kilohertz accuracy. J Phys Chem Letters **2020**;*11*:7843-7848. <u>https://dx.doi.org/10.1021/acs.jpclett.0c02136</u>.

•[5] <u>Wu</u> H, <u>Hu</u> CL, Wang J, <u>Sun</u> YR, Tan Y, Liu AW, Hu SM. A well-isolated vibrational state of CO₂ verified by near-infrared saturated spectroscopy with kHz accuracy. Phys Chem Chem Phys 2020;22:2841-2848. https://doi.org/10.1039/C9CP05121J.

•[6] Reed ZD, Drouin BJ, Long DA, Hodges JT. Molecular transition frequencies of CO_2 near 1.6 μ m with kHz-level uncertainties. J Quant Spectrosc Radiat Transf 2021;271: 107681. https://doi.org/10.1016/j.jqsrt.2021.107681.

•[7] Tan Y, Xu YR, Hua TP, Liu AW, Wang J, Sun YR, Hu SM. Cavity-enhanced saturated absorption spectroscopy of the (30012)-(00001) band of ${}^{12}C^{16}O_2$. J Chem Phys 2022;156:044201. https://doi.org/10.1063/5.0074713.

•[8] Jiang S, Tan Y, Liu AW, Zhou XG, Hu SM. Saturated Cavity Ring-Down Spectroscopy of ${}^{12}C^{16}O_2$ near 1.57 µm. Chinese J Chem Phys 2023;X:NoX. DOI: 10.1063/1674-0068/cjcp2305046.

•[9] Fleurbaey H, Ĉermák P, Campargue A, Kassi S, Romanini D, Votava O, Mondelain D. ¹²CO₂ transition frequencies with kHz-accuracy by saturation spectroscopy in the 1.99–2.09 µm region. Phys Chem Chem Phys 2023;25:16319. DOI: 10.1039/d3cp01603j rsc.li/pccp.

•[10] Birk M, Röske C, Wagner G. High accuracy CO₂ Fourier transform measurements in the range 6000–7000 cm⁻¹. J Quant Spectrosc Radiat Transf 2021;272:107791. <u>https://doi.org/10.1016/j.jqsrt.2021.107791</u>.

Серия	Число	Число	Число	J_{min}	J _{max}	Неопредел. %**)	χ ***)	<i>CKO</i> % ****)
перелодов	JIVIHVIVI	полос	парамстров			/0 /		/0 /
$\Delta P=1$	1579	19	10	0	84	1-5	0.75	3.4
$\Delta P=3$	2048	44	13	0	90	2-15	0.80	9.8
$\Delta P=5$	1841	31	17	0	80	1-50	1.11	6.6
$\Delta P=7$	2849	41	20	0	85	0.1-100	0.99	7.6
$\Delta P=9$	4668	46	20	0	101	0.1-30	1.18	6.61
$\Delta P=11$	4456	75	21	0	88	3-50	1.24	9.27
Δ <i>P</i> =13	825	23	6	0	64	6-17	0.94	12.5
$\Delta P=15$	107	5	6	0	47	4-39	1.16	10.4
$\Delta P=17$	278	7	4	0	52	1-50	1.34	23.4
$\Delta P=19$	76	3	2	2	44	10-20	0.78	10.3
Δ <i>P</i> =21	50	3	2	2	48	15-20	0.82	16.1

Таблица 3. Статистика подгонки параметров эффективного дипольного момента.

^{*)} $P = 2V_1 + V_2 + 3V_3$ – номер полиады, где V_i (i=1,2,3) колебательные квантовые числа.

^{**)} Неопред. % - пределы относительнаой неопределенности (1₅) экспериментальных интенсивностей линий.

χ^{***)} - взвешанное стандартное отклонение подгонки. ****) *СКО* – средне квадратичное отклонение подгонки.

Список параметров спектральных линий ¹²С¹⁶О₂ (2024)

Опорная температура: 296 К Спектральный диапазон: 345–14076 см⁻¹ Отсечка по интенсивности: 10⁻³⁰ см/молекула при 296 К Число спектральных линий: больше чем 530 000 Параметры линий: v, S, A, E_{low} , γ_{self} , γ_{air} , n_{self} , n_{air} , δ_{self} , δ_{air} , g_{low} , g_{up}

Диаграмма интенсивностей списков линий ¹²С¹⁶О₂: CDSD-2024 – новый список линий, CDSD-2019 – ранее опубликованный список линий (JQSRT **228** (2019) 124–131)

Сравнение экспериментальных центров линий полос 20013-00001 и 20012-00001 ¹²C¹⁶O₂ (Fleurbaey H. [9]) с нашими рассчитанными значениями , со значениями из базы данных HITRAN-2020 и с расчетами Университетского колледжа Лондон (UCL-4000). Черные вертикальные столбики – экспериментальная неопределенность.

Сравнение экспериментальных центров линий полос 30013-00001 и 30012-00001 ¹²C¹⁶O₂ (Wu H. et al. [5], Tan Y. et al. [7]) с нашими рассчитанными значениями , со значениями из базы данных HITRAN-2020 и с расчетами UCL. Черные вертикальные столбики – экспериментальная неопределенность.

Сравнение экспериментальных интенсивностей линий полос 30013-00001 и 30012-00001 ${}^{12}C^{16}O_2$ (Long D.A. et al. 2020) с нашими рассчитанными значениями , со значениями из базы данных HITRAN-2020 и с расчетами AMES (Huang X. et al. 2022). Черные вертикальные столбики – экспериментальная неопределенность.

Сравнение экспериментальных интенсивностей линий полос 31131-01101 и 00031- $00001 \, {}^{12}C^{16}O_2$ (Birk et al. 2021) с нашими рассчитанными значениями, со значениями из базы данных HITRAN-2020 и с расчетами AMES (Huang X. et al. 2022). Черные вертикальные столбики – экспериментальная неопределенность.

Новые данные ¹²С₂Н₂ в области 3.8 мкм. Район *∆Р*=4 (2380-2900 см⁻¹) (FTS, L=1км)

Jacquemart D., Lyulin O.M., Solodov A.M., Petrova T.M., Solodov A.A., Perevalov V.I., JQSRT, 2023. Jacquemart D., Lyulin O.M., Solodov A.M., Petrova T.M., Solodov A.A., JQSRT, 2023.

Пример воспроизведения участка спектра ацетилена с новым списком линий.

Новые данные ¹²C¹³CH₂ и ¹²C₂HD в области 3.8 мкм. Район ⊿*P*=4 (2380-2900 см⁻¹) (FTS, L=1км)

Число	¹² C ¹³ CH ₂	¹² C ₂ HD	HITRAN2020
Полос	11	6	0
Линий (изм./рекомм.)	482/944	208/691	0

Jacquemart D., Lyulin O.M., Solodov A.M., Petrova T.M., Solodov A.A., JQSRT, 2024.

Новые данные ¹²С₂Н₂ в высоковозбужденной области. Район ⊿*P*=20,21 (12350-13300 см⁻¹) (CRDS)

Lyulin O.M., Liu G.-L., Liu A.-W., Tan Y., Perevalov V., Hu S.-M., JQSRT, 2024. Lyulin O.M., Vasilchenko S.S., Perevalov V.I., JQSRT, 2023. Lyulin O.M., Vasilchenko S.S., Perevalov V.I., JQSRT, 2023.

Спасибо за внимание !