Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА«

Москва, Россия 11–15 ноября 2024 года

Особенности послепожарной динамики спектральных признаков участков лиственничных древостоев мерзлотной зоны Сибири

> Лаборатория космических систем и технологий ФИЦ КНЦ СО РАН, м.н.с. <u>Якимов Н.Д.</u> Соавторы: <u>Забродин А.В., Пономарёв Е.И.</u>

Состояние вопроса. Мерзлотные слои

Пожары в криолитозоне с одной стороны являются неотъемлемой частью процессов формирования и динамики экосистем, а с другой стороны могут становиться причиной долговременных нарушений и неустойчивости экосистем. В первую очередь после пожаров фиксируются различная степень повреждения древостоев и почвенного покрова (Bartalev, Stytsenko, 2021, Лупян и др., 2022). Исследования, основанные на материалах спутниковой съемки с применением спектральных индексов, позволяют получать количественные оценки степени пирогенной нарушенности лесов, успешности восстановительного процесса в различных лесорастительных условиях определяемых присутствием мерзлоты.

Состояние вопроса. Спектральные индексы

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ **ЛИСТАНЦИОННОГО ЗОНЛИРОВАНИЯ ЗЕМЛИ ИЗ** КОСМОСА"

Классификация послепожарных полигонов на СПУТНИКОВ на основе спектрального снимках CO нормализованного индекса **dNBR** (The differenced of Normalized Burn Ratio) позволяет характеризовать степень нарушенности зависимости Β OT типа пожара И интенсивности горения.

07

Длинна волны, мкм

0.9

Один из самых распространённых вариантов количественно отследить степень трансформации растительного покрова – это NDVI использование вегетационных индексов, например (Normalized Difference Vegetation Index).

Цель работы:

Оценить: *изменения спектральных признаков послепожарных участков для 4 вариантов степени сомкнутости мерзлоты на территории Сибири; *диапазоны спектральных индексов при различных уровнях начального воздействия пожаров по индексу dNBR; *скорость восстановления аномалий индексов ΔNDVI и ΔLST при послепожарной сукцессии в условиях 4 вариантов сомкнутости мерзлотных слоев.

Район исследования:

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

Puc. 1. Категории сомкнутости мерзлоты на территории средней Сибири. По материалам открытого каталога National Snow and Ice Data Center (<u>https://nsidc.org/data/ggd318)</u>.

Прямоугольники – области выборки пожаров, красные полигоны – пожары по данным ДЗ; Предварительный анализ и пространственная привязка пожаров выполнена на основе базы данных «Пожарное воздействие в криолитозоне Сибири за период 1996–2023 гг.», содержащей сведения о масштабах пожарного воздействия в зоне многолетней мерзлоты Сибири.

Мерзлотные слои занимают: Сплошная – >90% площади, Прерывистая – от 50 до 90% площади, Островная – не менее 10% площади, Редкоостровная – территория с изолированными остаточными проявлениями мерзлоты.

Исходные данные:

1) Работа выполнена с использованием спутниковых снимков Landsat—8/9 OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) среднего пространственного разрешения (15—100 м) из каталога United States Geological Survey (USGS, https://earthexplorer.usgs.gov);

2) Банк данных пожаров: предоставлен институтом леса им. В.Н. Сукачева СО РАН. Временной интервал: 1996–2024 гг.; Объем данных: ~3×10⁶ записей;

3) Карта древостоев Сибири по материалам спутниковой системы Vega-Pro (Лупян Е.А., ИКИ РАН, г. Москва).

4) Категории сомкнутости мерзлоты на территории Сибири по материалам каталога National Snow and Ice Data Center (https://nsidc.org/data/ggd318)

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2

Расчет спектральных индексов, BT, LST, ∆LST:

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

$BT=K2 / ln[(K1 / L\lambda) + 1]$

- BT brightness temperature (яркостная температура)
- $L\lambda$ Спектр излучения (Watts/(m2×srad×µm))
- К1 Константа термического преобразования для конкретной полосы из метаданных
- К2 Константа термического преобразования для конкретной полосы из метаданных

Расчет температуры поверхности земли LST:

$LST=TB / [1 + (\lambda \times TB/c^2) \times ln(emissivity)]$

 λ – wavelength of emitted radiance (для 10 канала константа = 10.8) c²=h×c/s=1.4388×10⁻² m K = 14388 µm K; h = Planck's constant = 6.626×10⁻³⁴ J s s = Boltzmann constant = 1.38×10⁻²³ J/K; c = скорость света = 2.998×10⁸ m/s emissivity – отражающая способность земной поверхности (константа 0.98)

Thermal Band: *L8 – 10.60-11.19 мкм*

(1)

(2)

Анализ амплитуды отклонений значений нарушенных участков от фоновых (%) для «LST», проводился за вегетационный период по формуле:

$$\Delta LST = 100 \times (LST_{uenb} - LST_{goot}) / LST_{goot}$$
(3)

LST_{фон} – температура земной поверхности на фоновых участках LST_{цель} – температура земной поверхности на трансформированных участках

Расчет спектральных индексов, NBR, dNBR, NDVI, ∆NDVI:

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

(4)

$$NBR = (NIR - SWIR) / (NIR + SWIR)$$

NIR – Ближний ИК (λ=0,845—0,885 мкм) *SWIR* – Коротковолновой ИК (λ= 2,100—2,300 мкм)

$$dNBR = NBR_{prefire} - NBR_{postfire}$$
(5)

NBR_{prefire} – допожарное изображение NBR_{postfire} – послепожарное изображение

Расчет вегетационного индекса «NDVI»:

NDVI = float(NIR - Red) / float(NIR + Red)(6)

NIR – Ближний ИК (λ=0,845—0,885 мкм) *Red* – Видимый красный (λ=0,630—0,680 мкм)

Анализ отклонений значений нарушенных участков от фоновых (%) для «NDVI», проводился за вегетационный период по формуле:

$$\Delta NDVI = (NDVI_{uenb} / NDVI_{\phi o \mu}) \times 100$$
⁽⁷⁾

*NDVI*_{фон} – среднее значение показателя NDVI для фоновой растительности *NDVI*_{цель} – среднее значение показателя NDVI для поврежденной растительности

Примеры вариативности спектральных индексов:

Класс	Диапазон dNBR	Характеристика	Пороговые значения dNBR
1	< 0.099	Несгоревшее	для классификации уровня
2	0.101 0.439	Низкий уровень	воздействия пожара на
3	$0.440 \dots 0.659$	Средний уровень	растительный покров.
4	> 0.660	Высокий уровень	

Расчет dNBR по данным Landsat, А – послепожарный снимок в естественных цветах, Б – в год пожара, В – через 5 лет.

0 - 0,099 0,099 - 0,439 0,439 - 0,659 0,659 - 1

Примеры вариативности спектральных индексов:

0,01 - 0,1 **0**,21 - 0,3 **0**,41 - 0,5 **0**,61 - 0,7 **0**,81 - 1

Таблица 2. Средние значения **NDVI** по 4 классам индекса **dNBR** на послепожарных участках с учетом начальной степени пожарного воздействия и типа сомкнутости мерзлоты

Средние значения NDVI								
	Классы dNBR							
Мерзлота	1	2	3	4	1	2	3	4
-	$\Delta NDVI_{cp}$			ΔNDVI _{Make}				
Сплошная	45	34	38	45	71	64	71	92
Прерывистая	80	61	52	46	93	89	86	87
Островная	70	52	40	35	98	100	100	100
Редкоостровная	77	68	63	56	96	93	91	88

Результаты. Сценарии ΔNDVI

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

воздействия (по dNBR) на послепожарных участках в условиях 4 вариантов мерзлоты:

а – сплошная мерзлота, б – прерывистая, в – редкоостровная, г – островная

Результаты. Классификация территорий

Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

Таблица 3. Средние значения температурной аномалии на послепожарных участках с учетом начальной степени пожарного воздействия и типа сомкнутости мерзлоты

Средние значения ΔLST								
	Классы dNBR							
Мерзлота	1	2	3	4	1	2	3	4
-	ΔLST_{cp}			ΔLST_{Makc}				
Сплошная	8,4	19,6	16,8	14,8	53,2	60,8	59, 4	54,1
Прерывистая	5,8	10,4	15,4	19,3	33,7	41,5	44,7	47,6
Редкоостровная	6,3	10,8	16,6	23,3	36,7	39,3	40,8	43,4
Островная	8,3	14,1	20,3	★ 24,6	36,6	42,1	46,9	49,6

Максимальный уровень аномалии ΔLST непосредственно после пожарного воздействия зафиксирован для сплошной мерзлоты ~85%, значения которых снижались в условиях прерывистой (~75%), островной (68%) и редкоостровной (64%) мерзлоты.

Puc. 2. Аппроксимация многолетней динамики ΔNDVI с привязкой к классам пожарного воздействия (по dNBR) на послепожарных участках в условиях 4 вариантов мерзлоты: •14

а – сплошная мерзлота, б – прерывистая, в – редкоостровная, г – островная

Заключение

Послепожарная динамика рассмотренных спектральных индексов может быть аппроксимирована семейством логарифмических функций, которые отражают как начальные условия (уровень пожарного воздействия), так и внешние условия – различия лесорастительных условий для вариантов распространения мерзлоты. Достоверность выбранных наборов функции в нашем случае составляла не ниже R²=0,63 для признака ΔNDVI и не ниже R²=0,33 для тепловой аномалии по ΔLST при заданном уровне значимости 0,95.

Показательно, что сценарии динамики аномалии ΔNDVI и ΔLST значительно меняются при переходе от условий распространения сплошной мерзлоты к территории прерывистой и островной. Можно предполагать, что в этом проявляются особенности послепожарных сукцессий в лиственничных редколесьях севера с преобладанием лиственницы Гмелина (*Larix gmelinii*) и в зоне доминирования лиственницы сибирской (*Larix sibirica*) с примесью темнохвойных пород, что может быть обозначено дополнительным признаком при решении с использованием спутниковой съемки данного класса задач.

Спасибо за внимание!

