

СО₂ облака в мезосфере Марса по данным солнечного просвечивания научного комплекса АЦС

0

<u>М. Лугинин</u>¹, Н. Игнатьев¹, А. Федорова¹, А. Трохимовский¹, Д. Беляев¹, Ф. Монмессан², О. Кораблев¹

¹ Институт космических исследований РАН, Москва ² LATMOS, Гюйанкур, Франция

Современные проблемы дистанционного зондирования Земли из космоса Секция «Дистанционное зондирование планет Солнечной системы» 12 ноября 2024 | Москва Наблюдения полярных СО₂ облаков ждый марсианский год ~30% атмосферной массы конденсируется, образуя сез

 Каждый марсианский год ~30% атмосферной массы конденсируется, образуя сезонные полярные шапки

A C S Atmospheric Chemistry Suite

- Полярные СО₂ облака образуются во время полярной ночи -> прямые наблюдения затруднены
- Полярные СО₂ облака на высотах < 30 км

esa VKV

- Непрямые наблюдения:
 - Детектирование больших величин аэрозольной опт. толщины на 0-25 km приборами MGS TES и MRO MCS
 - Отражения сигнала лазера на высотах 0–20 km (MGS MOLA, Neumann et al., 2003)

 Наблюдение температуры ниже температуры замерзания CO₂ на высотах <30 км [наблюдения в тепловом ИК «Маринер-9» и «Викинг», радио просвечивания MGS, MGS TES, MRO MCS, (Kieffer et al., 1976; Hinson and Wilson, 2002; Colaprete et al, 2003; Hayne et al., 2012, 2014)]

E

Х

0

Наблюдения мезосферных СО₂ облаков

• Мезосферные CO₂ облака детектированы на высотах 50–100 km

esa VRV ACS Atmospheric Chemistry Suite

 Наблюдения аэрозольных слоёв голубого цвета: спускаемый аппарат Mars Pathfinder, MGS MOC, OMEGA/Mars Express (Schofield et al., 1997, Clancy et al., 2007)

 Наблюдение температуры ниже температуры замерзания CO₂: спускаемый аппарат Mars Pathfinder, CRISM/MRO, THEMIS/Mars Odyssey,
 SPICAM, PFS, OMEGA, HRSC на борту «Марс-Экспресса», IUVS/MAVEN (Clancy et al., 2019; Vincendon et al., 2011; McConnochie et al., 2010; Montmessin et al., 2006; Aoki et al., 2018; Määttänen et al., 2010; Montmessin et al., 2007; Scholten et al., 2010; Jiang et al., 2019)

Лимбовые наблюдения OMEGA

E

X

АЦС — Atmospheric Chemistry Suite

ТИРВИМ — Фурье-спектрометр

- •Спектр. диапазон 1.7 17 мкм (580–5800 см⁻¹) • Δv~ 0.13 см⁻¹ (Sun), 0.8 см⁻¹ (Mars) • Режимы наблюдения:
- солнечное просвечивание (2 6 мкм) и надир •Поле зрения: Ø2.5°

МИР — эшелле + скрещенная дисперсия

O M

R

Α

S

E

X

•Спектр. диапазон: 2.3 – 4.2 мкм • λ/δλ~ 50 000

- Режим наблюдения:
- солнечное просвечивание
- Поле зрения: 0.23°×0.02°

НИР — эшелле + АОПФ

Dust and water ice during 2018 GDS from TIRVIM + NIR: Luginin et al., 2020

•Спектр. диапазон: 0.73 – 1.6 мкм
• λ/δλ~ 25 000
• Режимы наблюдения: солнечное и надир
• Поле зрения: 0.3°×0.02°

просвечивание

Наблюдение CO₂ облаков в полосе 2.7 мкм

S

R

Α

E X O M

O M

S

E

X

1)
$$T(\lambda) = \frac{I_A(\lambda)}{I_0(\lambda)}$$

1*) Коррекция газового поглощения
 CO_2 в полосе 2.7 мкм: $T(\lambda) \rightarrow T_{aer}(\lambda)$
2) $\tau_{\lambda} = -\ln(T(\lambda))$
3) "Очистка луковицы" — обратное

Е

X

O M

S

 \mathbf{R}

преобразование Абеля

 $k_{ext}(\lambda)$

4) Подгонка модели под кривую
 спектральной зависимости
 коэффициента ослабления аэрозоля

Восстановленные значения эфф. радиуса, счетной концентрации, массовой концентрации

E X

O M

R S

Α

Коэффициент преломления водяного льда, пыли и СО2 льда

Warren, 1986 — компиляция различных источников по CO₂, 2.7 мкм — Wood and Rouk (1982), δv = 4 cm⁻¹, T=80 K Gerakines and Hudson, 2020: CO₂ лед при 70 K, δv = 0.2 cm⁻¹: Водяной лед @ 266 K = Warren, Brandt – 2008; @ 130-210 K = Clapp, Worsnop, Miller – 1995

Пыль = Wolff et al. 2009

Модели аэрозольного ослабления CO₂ льда

Extinction cross section of CO_2 particles calculated for 0.1 effective variance

Е

Х

0

M

Α

S

Примеры полосы поглощения СО₂ льда: пропускание МИРа

$$r_{\rm eff} = 1.76 \pm 0.06 \ \mu\text{m}, N = 0.16 \pm 0.01 \ \text{cm}^{-3}, m = (8.0 \pm 0.3) \cdot 10^{-12} \ \text{g/cm}^{-3}$$

Примеры полосы поглощения СО2 льда : эксперимент и модели

Е

Х

0

M

S

MIR, orbit #015965, egress, L_S 62°, Latitude 42°S, Longitude 314°E, Local Time 8h

E X O A R

Одновременное наблюдение сеанса 5401_Е ТИРВИМом и МИРом

S

Α

Анализ состояния насыщения СО₂ газа при детектировании СО₂ облаков

$$S = \frac{P}{P_{sat}(T)} \quad \log_{10} P_{sat}(T) = \left[A + \frac{B}{T+C} + \frac{D}{T+E}\right] \begin{array}{l} A = 6.760959 \\ B = -1284.07 \end{array} \begin{array}{l} C = -4.718 \\ D = 1.256e - 4 \\ B = -1284.07 \end{array}$$

10⁰

10⁻¹

NIR

MIR

Т

COCKOCMOC COMPANY CONSTRUCTION OF CONSTRUCT OF CONSTRUCTION OF CONSTRUCT OF CONSTRUCTION OF CONSTRUCTION OF CONSTRUCTUOE OF CO

S

Статистика наблюдения мезосферных СО₂ облаков

ТИРВИМ: проанализировано 910 сеансов солнечного просвечивания

-90 -180

-120

-60

МИР: 864 сеансов солнечного просвечивания (положение вторичного зеркала №4)

1663 различных наблюдений 11 детектирований СО₂ облаков Apr 18 Aug 18 Dec 18 Aug 19 Dec 19 Aug 20 Dec 20 Aug 21 Dec 21 Apr 22 Apr 19 Apr 20 Apr 21 90 CO₂ ice detection by MIR at the morning terminator 60 60 CO₂ ice detection by MIR at the evening terminator _atitude [°] 30 30 CO₂ ice detection by TIRVIM at the morning terminator 0 0 TIRVIM Stop CO₂ ice detection by TIRVIM at the evening terminator -30 -30 -60 -60 -90 -90 L_s [°] 180 270 0 (MY 35) 90 180 270 0 (MY 36) 90 180 90 360 CO₂ ice detection at the morning terminator ♦ CO₂ ice detection at the evening terminator 60 300 30 240 Latitude [°] تى^{180 س} 120 -30 -60 60

60

120

180

14

CXOCMOC COSA IRAN ACCOUNTS

E

Свойства детектированных мезосферных СО₂ облаков

- r_{eff}= 0.1-2.2 мкм, медиана 0.6 мкм
- Н= 39–90 км
- τ = 5×10⁻⁴-4×10⁻² на 0.8мкм и 2.7 мкм

 S ≥ 1 в 5 из 19 случаев СО₂ облаков (26 %)

X

O M

Α

R

S

- *S* < 0.1 в 9 из 19
- ТИРВИМ: полосы поглощения водяного и сухого льда
 В 2 из 5 случаев одновременно СО₂ и H₂O облака

Occultation	Channel	L _S [°] (MY)	Latitude	Eastern Longitude	Local time [h]	H [km]	r _{eff} [μm]	N[cm-3]	M[10 ⁻¹⁴ g/cm ³]	S _{max} NIR; S _{max} MIR	τ×10-3	H ₂ O ice
3502_E	TIRVIM	244.4 (34)	27°S	-65°	5.2	72-82	0.6-0.7-0.8	0.02-0.1-0.3	5-20-30	0.08; -	3; 4	\checkmark
5401_E	MIR.	337.6 (34)	50°N	-104°	6.8	49-55	0.1-0.2-0.4	0.7-6-200	20-60-200	[7; 9]·10 ⁻⁴	4; 3	?
						61-79	0.1-0.2-0.6	0.1-10-90	7-40-300	0.07, 0.03	17;25	X
	TIRVIM					47-56	_1	1	1	1		\checkmark
						65-80	0.2-0.4-0.5	0.4-2-20	20-50-100	0.07; 0.03	10; 22	×
6452_I	TIRVIM	20.7 (35)	1°S	152°	18.0	59-78	0.2-0.8-0.9	0.03-0.3-5	6-80-200	10; -	18; 21	X
6602_E	TIRVIM	26.4 (35)	6°S	7°	6.1	76-86	0.1-0.15-0.21	10-40-500	20-100-200	1; -	7; 9	X
9192_I	MIR	121.0 (35)	5°S	19°	17.9	55, 57 ²	2.2, 1.0 ²	0.03, 0.4 ²	200, 200 ²	0.03; 0.02	4; 3	?
						62-70	0.1-0.8-1.9	0.1-2-600	70-500-1000	0.8; 0.02	40; 37	?
10738_E	MIR	186.5 (35)	21°N	140°	6.1	50-65	0.1-0.1-0.3	3-20-60	20-30-40	[8; 3]·10 ⁻³	3;6	X
						72-74	0.2-0.25-0.3	0.2-0.2-0.6	2-2-3	0.2; 0.06	[5; 8]·10 ⁻²	X
						79-90	0.1-0.1-0.3	0.3-30-70	2-10-40	1; 0.3	3; 0.6	X
14059_E	MIR	349.1 (35)	30°S	-91°	5.8	45-62	0.13-0.16-0.4	0.4-10-30	6-20-60	[2; 2]·10 ⁻³	7; 20	×
14501_I	MIR	7.3 (36)	12°N	13°	18.1	48-52	0.1-0.2-0.3	5-13-70	30-50-60	[5; 5]·10 ⁻³	2; 4	?
						58-65	0.1-0.11-0.23	5-40-100	8-40-50	0.2; 0.3	2; 1	X
						71-79	0.1-0.16-0.3	0.3-4-20	3-5-10	4; 4	0.5; 0.8	X
15965_E	MIR	62.1 (36)	42°S	-46°	7.4	53-59	0.13-1-1.1	0.02-0.2-70	15-25-80	0.1; 0.07	3; 3	X
16825_E	MIR	92.9 (36)	54°S	143°	8.7	58-63	0.1-1.9-2.2	0.1-0.3-70	4-500-2000	0.3; 20	29; 31	×
19076_E	MIR	184.1 (36)	49°N	-23°	6.1	39-54	0.13	40-50-603	20-30-403	[3; 4] · 10-4	5; 3	X
						69-76	0.13	30-70-1003	20-40-603	0.05; 0.09	5; 4	X
						80-84	0.13	16-20-40	10-13-20	1; 0.3	1; 0.5	X

Детектирование СО₂ облаков с помощью профилей *P, T* и аэрозольной экстинкции

S

R

Α

X O M

E

Детектирование CO₂ облаков по данным НИР

О Аэрозольный коэффициент ослабления Профили *Р* и *Т* -> профили *S* (А.А. Федорова) Большое количество наблюдений

S

Набор данных

E

X

0

M

S

8632 сеансов НИР с восстановленными профилями Р, Т и аэрозольной экстинкции L_s 163° MY 34 — L_s 166° MY 36

Распределение по высоте, широте и местному времени

Е

Х

0

M

Α

S

 \mathbf{R}

8632 сеансов НИР L_s 163° MY 34 — L_s 166° MY 36

62 детектирований СО₂ облаков — 56 новых случаев (не считая опубликованных Luginin+ 2024)

E X O M A R S

Наблюдения мезосферных СО2 облаков: широта и солнечная долгота

Previous detections: **SPICAM** (Montmessin+ 2006), **TES** (Clancy+ 2007), **OMEGA** (Montmessin+ 2007; Maatanen+ 2010), **THEMIS** (McConnochie+ 2010), **HRSC** (Scholten+ 2010), **CRISM** (Vincendon+ 2011; Clancy+ 2019), **PFS** (Aoki+ 2018), **IUVS** (Jiang+ 2019), **NOMAD** (Liuzzi+ 2021), **ACS** (Luginin+ 2024)

Наблюдения мезосферных СО2 облаков: широта и долгота

Previous detections: **SPICAM** (Montmessin+ 2006), **TES** (Clancy+ 2007), **OMEGA** (Montmessin+ 2007; Maatanen+ 2010), **THEMIS** (McConnochie+ 2010), **HRSC** (Scholten+ 2010), **CRISM** (Vincendon+ 2011; Clancy+ 2019), **PFS** (Aoki+ 2018), **IUVS** (Jiang+ 2019), **NOMAD** (Liuzzi+ 2021), **ACS** (Luginin+ 2024)

Выводы

Детектирование CO₂ облаков по полосе 2.7 мкм по данным ТИРВИМ и МИР

- Детектирование CO₂ облаков в 11 солнечных затмениях из 1663 уникальных наблюдений TIRVIM и MIR с L_s
 164 МГ 34 (апрель 2018 г.) по L_s 206 МГ 36 (апрель 2022 г.), 19 слоев CO2.
- \bigcirc Эффективный радиус СО₂ = 0.1−2.2 мкм, медиана 0.6 мкм.
- СО₂ облака были обнаружены на высотах 39–90 км. В 5 из 11 затмений наблюдалось два или три слоя СО₂ облаков, разделенных промежутками в 5–15 км.
- о Оптическая толщина CO₂ облаков в надире на 0.8 мкм и 2.7 мкм $5 \times 10^{-4} 4 \times 10^{-2}$, медианные значения 5×10^{-3} .
- 2 из 5 случаев детектирования CO₂ облаков сопровождались наблюдениями H₂O аэрозолей. Они располагались на высоте ~50 км и ~75 км. Эффективный радиус H₂O = 0.1–0.2 мкм.
- S ≥ 1 было обнаружено в 5 из 19 случаев, S < 0.1 обнаружено в 9 из 19 случаев. Интерпретация наблюдаемых свойств частиц CO₂ и атмосферных параметров требует более сложного подхода.

Luginin, M., Trokhimovskiy, A., Fedorova, A., Belyaev, D., Ignatiev, N., Korablev, O., Montmessin, F., & Grigoriev, A. (2024). Unambiguous detection of mesospheric CO₂ clouds on Mars using 2.7 μm absorption band from the ACS/TGO solar occultations. Icarus, 423(August), 116271. https://doi.org/10.1016/j.icarus.2024.116271

Детектирование CO₂ облаков из Р, Т и аэрозольной экстинкции по данным НИР

- \circ 56 новых обнаружений детектирование CO₂ облаков (8632 сеансов L_s 163° MY 34 L_s 166° MY 36)
- о Большинство обнаружений происходит в пределах последовательностей орбит
- о Неравномерное географическое и сезонное распределение

Группировка по широте -145°E–45°E, долготе 20°S–20°N, и солнечной долготе L_s 0°–40°, 120°–135°

○ Повторное появление CO₂ облаков в двух последовательных марсианских годах LS 0°−40°, 120°−135°

Спасибо за внимание!

E

Х

0