Озонометр-ТМ КА Ионосфера-М №№ 3 и 4

Дзюбан И.А 1 , Доброленский Ю.С. 1 , Викторов А.И. 2 , Шаталов А.Е. 2 , Солодилов М.В. 3

1 – ИКИ РАН

2 – НПП «Астрон Электроника»

3 – ВНИИОФИ

Характеристики прибора

Основные научные задачи

Поле зрения

Спектральный диапазон

Спектральное разрешение

Диспергирующий элемент

Детектор

Мониторинг озона, NO₂ и других газов

Точечное, менее 1⁰, соответствует полосе шириной менее 7 км 300-500 нм

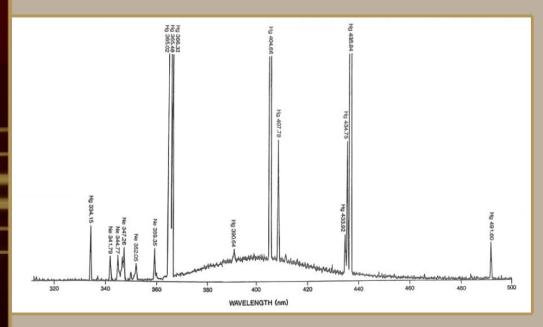
0,3 - 0,4 HM

Вогнутая голографическая дифракционная решетка

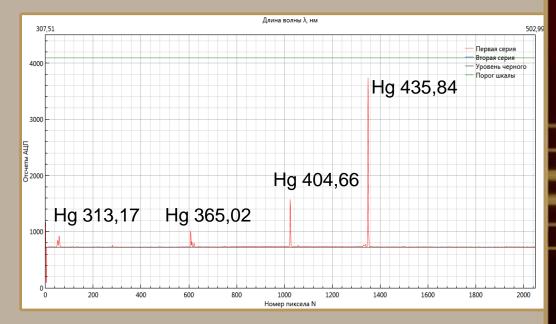
Линейка Dalsa IL-C6, 2048 эл-тов 13×500 мкм

История создания прибора

- 2008 г. Передача проекта спектрометра для мониторинга концентрации озона в ИКИ.
- 2011 г. Изготовление первого рабочего образца прибора.
- 2012-2013 гг. Полевые измерения и долгая пауза.
- 2018 г. Возобновление работ по проекту и доработка прибора.
- Зима 2024 г. Сборка и испытания штатных образцов Озонометра-ТМ.
- Весна 2024 г. Калибровки летных образцов и их поставка во ВНИИЭМ для установки на КА.


Оптическая схема прибора

- 1. Входная бленда.
- 2. Внеосевое параболическое зеркало.
- 3. Щель.
- 4. Вогнутая дифракционная решетка.
- 5. Посадочное место детектора



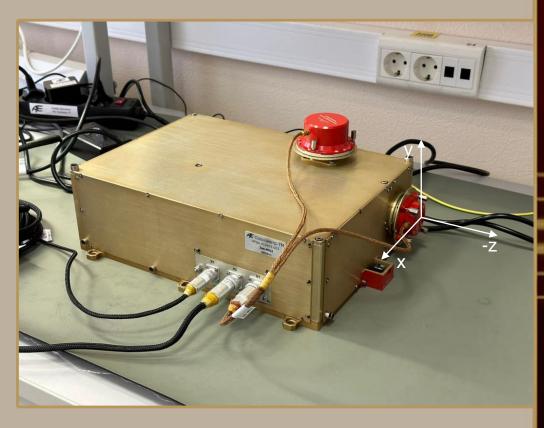
Калибровки по длине волны

Эталонный спектр ртутной лампы Oriel HgNe 6034

Спектр ртутной лампы, полученный Озонометром-ТМ

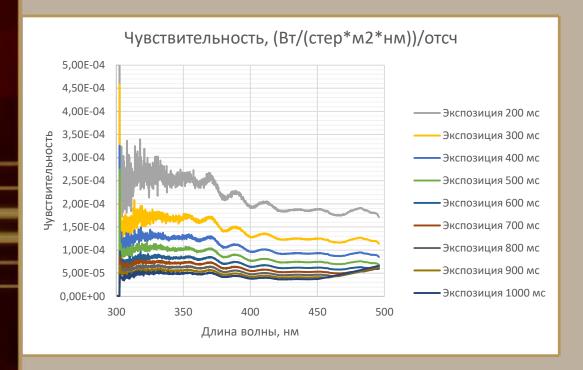
Проверка разрешения прибора

- Изображение триплета 365,02 нм; 365,48 нм и 366,33 нм.
- ПШПВ пика 365,02 нм составляет 4 пикселя или 0,4 нм



Определение оси поля зрения прибора

Для точной геопривязки было определено отклонение поля зрения прибора от его посадочных мест.


При установке на КА прибор выставляется по посадочным местам в соответствии с осями КА.

Образец	Отклонение Х	Отклонение Ү
ЛО1	0,520	0,20
ЛО2	-0,91 ⁰	-0,19 ⁰

Озонометр-ТМ на испытаниях

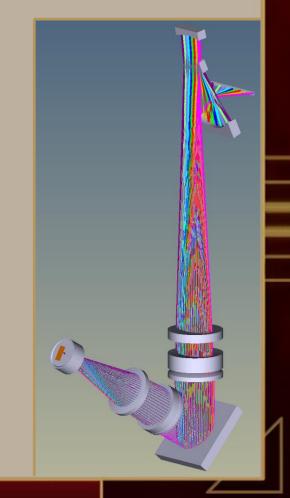
Калибровка чувствительности


Результаты калибровки по оптическому эталону

Калибровка на оптическом эталоне

Полевые измерения (верификация методики)

В декабре 2012 г. была проведена серия измерений на Кисловодской высокогорной научной станции.


Статус прибора

- Образец КДО Озонометра-ТМ успешно прошел полный объем испытаний (РИ заканчиваются 19.11) и подтвердил работоспособность прибора в течение 5 лет гарантийного срока службы.
- Образцы ЛО-1 и ЛО-2 поставлены в ВНИЭМ для установки на КА «Ионосфера-М» №№ 3 и 4.
- Запуск КА «Ионосфера-М» №№ 3 и 4 запланирован на апрель 2025 года с космодрома Восточный.

Озонометр-З

- Спектрометр с полем зрения 100 градусов, обеспечивающий пространственное разрешение не хуже 7 км.
- 2 канала, 300 500 нм и 400 800 нм, со спектральным разрешением 0,3 нм в УФ канале и 0,5 нм в ВИЗ канале.
- Планируется к установке на КА Ионосфера-Зонд

Планы на будущее

- Отработать методику автоматической обработки данных Озонометр-ТМ и последующих приборов.
- Изготовить Озонометр-3 для космического аппарата Ионосфера-Зонд.
- Подана заявка на УФ-ВИЗ спектрометр, аналогичный Озонометру-З на РОСС.
- На стадии эскизного проекта находится многоканальный спектрометр СА-МП для аппаратов Метеор-МП, в состав которого входят каналы, аналогичные Озонометру-З по научным задачам, а также ИК каналы для мониторинга парниковых газов.