

Многолетние наблюдения минеральной пыли и ледяных облаков в атмосфере Марса в эксперименте СПИКАМ на КА Марс-Экспресс

Федорова А.А. (1), Лугинин М.С. (1), Кораблев О.И. (1), Монтмессан Ф. (2), Берто Ж.-Л. (2)

> МЕЖДУНАРОДНЫЕ ЕЖЕГОДНЫЕ КОНФЕРЕНЦИИ "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА"

(Физические основы, методы и технологии мониторинга окружающей среды, природных и антропогенных объектов)

¹ Институт космических исследований РАН, Москва, 117997, Россия ² LATMOS/CNRS, 11, boulevard D'Alembert, 78280 Guyancourt, France

Пыль и лед в атмосфере Марса

 Источник пыли - реголит: сильное влияние на температуру (как пыль пустыни)

– Ядра конденсации для водяного пара.

–Ледяные частицы (H₂O, CO₂): конденсация (аналог перистых облаков)

-Динамический перенос, седиментация, вертикальное распределение;

Montabone et al., 2015; Kahre et al., 2017

Облака водяного пара облачный пояс афелия, полярный воротник

Сезонный цикл TES/MGS Smith 2004

Прямая связь с водяным циклом и конденсацией воды:

- Холодный афелий высота облаков 10-20 км
- Теплый перигелий высота облаков 40-60 км

Clancy et al. 1996; Montmessin et al. 2004 Образование облаков из водяного льда влияют на радиационный баланс атмосферы, перенос летучих веществ и фотохимию.

Вертикальное распределение и размеры частиц

Earth and Space Science

RESEARCH ARTICLE

10.1029/2021EA001869

Key Points:

 Assimilation of atmospheric measurements of Mars into a global circulation model is extended to include limb profiles of dust opacity
 Combining nadir and limb profiles of dust opacity enables more accurate

recovery of dust vertical structure

Assimilation of Both Column- and Layer-Integrated Dust Opacity Observations in the Martian Atmosphere

Tao Ruan¹, R. M. B. Young^{1,2}, S. R. Lewis³, L. Montabone^{1,4}, A. Valeanu¹, and P. L. Read¹

¹Department of Physics, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Oxford, UK, ²Department of Physics & National Space Science and Technology Center, UAE University, Al Ain, United Arab Emirates, ³School of Physical Sciences, The Open University, Milton Keynes, UK, ⁴Space Science Institute, Boulder, CO, USA

JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS, VOL. 118, 980–993, doi:10.1002/jgre.20084, 2013

Icarus Volume 388, December 2022, 115239

Impact of the coagulation of dust particles on Mars during the 2018 global dust storm

T. Bertrand ^{a b} ∧ ⊠, M.A. Kahre^b, R. Urata^c, A. Määttänen^d, F. Montmessin^e, R.J. Wilson^b, M.J. Wolff^f

The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation

Scott D. Guzewich,¹ Anthony D. Toigo,² Mark I. Richardson,³ Claire E. Newman,³ Elsayed R. Talaat,² Darryn W. Waugh,⁴ and Timothy H. McConnochie⁵

Received 8 February 2013; revised 5 April 2013; accepted 20 April 2013; published 20 May 2013.

Вертикальное распределение и размеры частиц

KA: Viking Orbiters, Mars Odyssey, Mars-Express, Mars Reconnaisance Orbiter, MOM, MAVEN. **Trace Gas Orbiter**

КА	Эксперимент	Годы	Местное время	Высот ы, км	Природа аэрозоля	Хар-ки аэрозоля
Марс-	SPICAM UV u IR	2004- 2024 (IR)	Утро вечер, затмения	0-70	нет	Размеры частиц Численная плотность, mmr
JRCHPECC	OMEGA	2004- 2012	Дневные лимбы	0-50	Пыль, лед	Размеры частиц, Численная плотность, mmr
MRO	CRISM	2006- 2024	Дневные лимбы	0-50	Пыль, лед	Размеры частиц Численная плотность, mmr
	Mars Climate Sounder	2006- 2024	Ночь, день, лимбы	0-70	Пыль, лед	Непрозрачность к плотности, массовый коэф-т перемешивания (mmr)
Trace Gas	ACS	2018- 2024	Утро вечер, затмения	0-80	Пыль, лед	Размеры частиц, численная плотность, mmr
Orbiter	NOMAD	2018- 2024	Утро вечер, затмения	0-80	Пыль, лед	Размеры частиц, численная плотность, mmr

Fig. 2: Individual temperature (left) and dust (right) profiles representative for southern high latitudes (blue) and northern high latitudes (brown) on July 12, 2007.

2004-2024

Mars Express spacecraft

Atmosphere MARS

Line of sight

Channel	Modes	Spectral range	Spectral resolution	Species in SO
UV	Nadir Occultations	118-320 nm	>100	Aerosols, CO ₂ , O ₃
Near-IR	nadir Occultations	1-1.7 μm	~2000	Aerosol, CO ₂ , H ₂ O

Occultations:

- Self-calibrated
- H₂O density from 1.38 μm band
- Atmospheric density from 1.43 μ m CO₂ band
- Aerosol extinction profiles and particle size distribution with 10 spectral points outside gaseous absorption bands

Предыдущие работы по СПИКАМ ИК

По профилям экстинкции (ослабления): наблюдаемые слои – облака льда?

Профиль экстинкции (или профиль оптической толщины на луче зрения) Слой может указывать на облако

 Сравнение с моделью общеи циркуляции (Mars GCM)

Planetary Climate Model Mars Climate Database version 5.3, 6.1 http://www-mars.lmd.jussieu.fr/mars/access.html

По профилям экстинкции (ослабления): наблюдаемые слои – облака льда?

Является ли слой облаком водяного льда?

Критерии:

- По данным MCS: MMR_H2Oice > 4 x MMR_dust
- По модели MCD: MMR_H2Oice > 4 x MMR_dust 2)
- 3) Насыщение водяного пара в MCD $S_1 > 1$
- Насыщение водяного пара по SPICAM H₂O и температурам MCS S₂>1. **4**)

Orbit 13202 N1 Ls=135.6 Lat=38.54 Long=90.26 LT SPICAM=19.01 LT MCS=17.258

Наблюдение

Пространственное и сезонное распределение

10 марсианских лет наблюдений (МҮ27-36)

Экстинкции за период 28-36 марсианского года: сезонный тренд

Распределение водяного льда по размерам: сезонный тренд (МҮ28-МҮ36)

Н₂О лед

Распределение водяного льда по размерам: сезонный тренд (МҮ28-МҮ36)

Водяной лед в высоких южных широтах Сравнение данных СПИКАМ ИК и ACS-MIR (Stcherbinine et al. (2022)

Shchebinine et al.,

Пыль

Распределение пыли по размерам: сезонный тренд (МҮ28-МҮЗ6)

45N-90N

250

200

2.00

90

Валидация с ACS/TGO TIRVIM и MIR разделяют в наблюдениях водяной лед и пыль по полосе льда 3 мкм

TIRVIM, Fourier

MIR, echelle+cross-dispersion

Spectral range 1.7 – 17 μ (580–5800 cm-1)
Δυ~ 0.13 cm-1 (Sun), 0.8 cm-1 (Mars)
Operation modes: Nadir and Solar Occultation
FOV: Ø2.5°

•Spectral range 2.3 – 4.2 μ

λ/Δλ~ 50 000

Operation modes: Solar

Occultation

• FOV: 0.23°×0.02°

Luginin et al. (2020; 2024)

Совместные наблюдения с ACS TGO

				SP·		SP·				ACS		
	SPICAM	SP·	SP·	Local∙		FOV,∙	ACS	ACS	ACS	local∙	ACS	ACS∙
MY¤	orbit¤	Longitude¤	Latitude¤	time¤	SP·Ls¤	km¤	orbit¤	longitude¤	Latitude¤	time¤	Ls¤	instrument¤
34¶	18322 ¤	156.2¤	- 70.0 ¤	19.6 ¤	199.2 ¤	5.5¤	2610 ¤	158.0 ¤	- 70.0 ¤	19.6 ¤	199.2 ¤	TIR¤
¶	18558¤	144.7¤	60.0¤	15.1¤	241.6¤	З¤	3488¤	137.1¤	57.7¤	15.2¤	243.6¤	TIR¤
୩ ୩	18569¤	107.2¤	58.0¤	15.3¤	243.7¤	З¤	3464¤	109.2¤	55.8¤	15.5¤	242.4¤	TIR¤
" ¶	18573¤	60.6¤	57.2¤	15.4¤	244.4¤	З¤	3478¤	65.1¤	57.2¤	15.3¤	243.1¤	MIR¤
¤	18573¤	60.6¤	57.2¤	15.4¤	244.4¤	З¤	3516¤	50.7¤	59.0¤	15.0¤	245.1¤	TIR¤
35¶	19353¤	173.5¤	48.0¤	18.4¤	13.8¤	5.5¤	6326¤	178.0¤	50.9¤	18.6¤	15.8¤	TIR¤
9 ¶	19530¤	66.3¤	-68.1¤	15.2¤	37.7¤	2.4¤	6881¤	72.0¤	-66.1¤	15.5¤	36.8¤	TIR¤
¶	20467¤	23.3¤	79.6 ¤	20.9 ¤	163.7¤	1.9 ¤	10235¤	24.8 ¤	79.9 ¤	20.9¤	163.7¤	MIR¤

TIRVIM+NIR – SPICAM IR MIR+NIR (p12,13) -SPICAM IR

Collocated:

2 deg of Ls4 deg of latitude10 deg of longitude localtime no more than one hour

Заключение

Рассмотрен весь массив данных солнечных затмений эксперимента СПИКАМ ИК на КА Марс-Экспресс с 28 по 36 марсианский год (2006-2022)

- Основной проблемой при интерпретации данных СПИКАМ по аэрозолю Марса была невозможность разделение вклада льда и пыли в ослабление излучения
- Привлечение данных MCS/MRO и результатов модели циркуляции MCD, позволили решить этот вопрос.
- Получены сезонные и широтные тренды размеров частиц, относительной концентрации и массового коэф-та перемешивания для водяного льда и пыли в атмосфере
- Пылевые частицы показали однородное распределение по размерам с высотой с эффективным радиусом ~0.75-8 мкм
- Хорошее согласие с одновременными измерениями ACS TGO на индивидуальных профилях и с сезонно-широтными распределениями MCS и MCD по *mmr*

mank you for your attention.