

Санкт-Петербургский государственный университет

Методика определения элементов вертикального распределения озона из спектров уходящего теплового излучения

Акишина С.В., Поляков А.В., Виролайнен Я.А.

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Методы и алгоритмы обработки спутниковых данных Двадцать вторая международная конференция "СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА" 11 ноября 2024 г.

ИКФС-2

- Спутниковый ИК Фурье-спектрометр ИКФС-2 измеряет уходящее тепловое излучение и может предоставлять данные об атмосфере для численного прогнозирования погоды и различных применений в области наук об атмосфере и климате.
- УКФС-2 входит в состав аппаратуры российских метеорологических спутников серии «Метеор-М» №2. Прибор разработан Исследовательским центром имени М.В. Келдыша.

Параметр	Значение
спектральный диапазон	5-15 мкм (660-2000 см⁻¹)
спектральное разрешение	0.4 cm ⁻¹
NESR, [мВт/(м² ср см⁻¹)]	0.35 , λ = 6 мкм 0.15 , λ = 13 мкм 0.45 , λ = 15 мкм
пространственное разрешение	35 км
полоза обзора	10002500 км
время измерения	0.6 c

Пример измеренного спектра:

2701 спектральный канал с аподизированным спектральным разрешением 0,7 см⁻¹ в спектральной области 660-1210 см⁻¹ и 1,4 см⁻¹ в области 1210-2000 см⁻¹

Оценки осредняющих ядер и числа независимых компонент относительно вертикального распределения озона

3

Алгоритм решения нелинейной обратной задачи определения вертикальных профилей

Физико-математический подход

$$\bar{\vec{x}} = E(\vec{x}) \qquad D = E(\vec{x} - \bar{\vec{x}})(\vec{x} - \bar{\vec{x}})'$$
$$= B(\vec{x}) + \vec{\varepsilon} \qquad \bar{\vec{\varepsilon}} = E(\vec{\varepsilon}) = 0 \qquad \Sigma = E\vec{\varepsilon}\vec{\varepsilon}'$$

- \vec{x} вектор состояния атмосферы
- $ec{y}$ измеряемый спектр

 \vec{v}

$$\Phi(\tilde{\vec{x}}) = \left\| \boldsymbol{B}(\tilde{\vec{x}}) - \tilde{\vec{y}} \right\|_{\boldsymbol{\Sigma}^{-1}}^{2} + \left\| \tilde{\vec{x}} - \bar{\vec{x}} \right\|_{\boldsymbol{D}^{-1}}^{2} -> min \qquad [Поляков, 1996]$$

Алгоритм минимизации итерационный:

$$\widetilde{\Phi}_{k}(\tilde{\vec{x}}_{k+1}) = \left\| A_{k}\tilde{\vec{x}}_{k+1} - \tilde{\vec{y}} \right\|_{\Sigma^{-1}}^{2} + \left\| \tilde{\vec{x}}_{k+1} - \bar{\vec{x}} \right\|_{D^{-1}}^{2} + \left\| \tilde{\vec{x}}_{k+1} - \tilde{\vec{x}}_{k} \right\|_{L^{-1}} - > \min$$

Линеаризуем оператор **В** в окрестности предыдущего приближения к решению и применяем метод статистической регуляризации к полученной линеаризованной задаче

$$\vec{x}_{k+1} = \bar{\vec{x}} + (A'\Sigma^{-1}A + D^{-1} + L^{-1})^{-1} \left(A'\Sigma^{-1} \left(\tilde{\vec{y}} - B(\vec{x}_k) + A(\vec{x}_k - \bar{\vec{x}}) \right) + L^{-1} \left(\vec{x}_k - \bar{\vec{x}} \right) \right)$$

 \vec{x}_0 - начальное приближение профиля.

Средняя разность расчетов LBLRTM-RTTOV

LBLRTM

Line-By-Line Radiative Transfer Model - модель точного спектрального (line-by-line) радиационного расчета

<u>RTTOV</u>

Radiative Transfer for TOVS (TIROS (Television InfraRed Observation Satellite) Operational Vertical Sounder)) модель параметризации результатов точного спектрального расчета

давление, гПа

Результаты подбора параметров алгоритма РОЗ

Начальное приближение профиля озона	Средняя разность, DU	SDD, DU	SDD, %
MLR	7	131	45
ANN [Поляков, 2014]	3.9	50	17

Критерий оптимальности: **разность общего содержания озона** исходного и восстановленного состояний

Обучение ANN по банку профилей SeaBor [Borbas, 2005]. Предварительный этап: восстановление профилей температуры и влажности Спектральный интервал по озону: **980-1080 см**-1

Число итераций n и ГК профиля озона	Средняя разность, DU	SDD, DU	SDD, %
n=1, ГК=3	2.1	60	20
n=2, ГК=3	0.8	69.8	24
n=1, ГК=4	5.5	63.8	22

Спектральные каналы полосы озона	Средняя разность, DU	SDD, DU	SDD, %
980-1080 см ⁻¹	2.1	60	20
1000-1080 см ⁻¹	0.1	59.4	17
1025-1075 см ⁻¹	2.5	37.2	13

Полоса поглощения озона и линии поглощения водяного пара

«Убраны» каналы с мешающим восстановлению озона поглощением водяного пара

Средние по широтным зонам восстановленные профили

Средний по всем широтам восстановленный профиль озона и средняя погрешность

10

ozonesonde observations, Atmos. Chem. Phys., 9, 6255-6271, https://doi.org/10.5194/acp-9-6255-2009, 2009.

11

Заключение

- Представлена методика для решения обратной задачи получения вертикального профиля содержания озона. В основе методики физико-математический подход в форме обобщения метода статистической регуляризации на нелинейные задачи с элементами, улучшающими сходимость решения.
- Выявлено, что для получения начального приближения к решению оптимально использовать метод ИНС (регрессионный подход решения обратной задачи).
- Для увеличения быстродействия обработки измерений размерность задачи уменьшается с применением метода главных компонент как по отношению к измеренным спектрам, так и по отношению к восстанавливаемым профилям. Оптимальное число главных компонент для профиля озона равно 3.
- Представлены оценки погрешностей методики. Для оценок погрешностей интерпретации спектров ИКФС-2 проведены замкнутые численные эксперименты с использованием модельных спектров уходящего теплового излучения, рассчитанных на основе модели RTTOV по заданным профилям содержания озона (профили озонозондирования + NCEP GFS).

В планах на будущее: оптимизировать методику продолжая проведение замкнутых численных экспериментов, рассмотреть влияние ошибки сглаживания, оценить погрешности для отдельных слоев атмосферы, обработать реальные измеренные спектры и провести валидацию на основе сравнений с независимыми данными (MLS, ACE-FTS и др.)

Литература

- 1. Поляков А.В. К вопросу об использовании априорной статистической информации при решении нелинейных обратных задач атмосферной оптики // Исследование Земли из Космоса. —1996. —№3. —С 11-17.
- 2. Поляков А.В. Использование метода искусственных нейронных сетей при восстановлении вертикальных профилей атмосферных параметров. // Оптика атмосферы и океана. 2014. Т. 27. № 01. С. 34-39.
- 3. Borbas, E. E., Suzanne Wetzel Seemann, Hung-Lung Huang, Jun Li, and W. Paul Menzel, 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. *Proceedings of the XIV. International ATOVS Study Conference*, Beijing, China, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison, WI, 2005, pp.763-770.

Благодарности

Благодарим **НИЦ «Планета»** за предоставление доступа к результатам спектральных измерений ИКФС-2, рабочую **группу HEGIFTOM в рамках проекта TOAR-II** за предоставление доступа к гармонизированным данным озонозондовых измерений. Благодарим **Д.А. Козлова** (АО ГНЦ «Центр Келдыша») за ряд ценных консультаций.

Санкт-Петербургский государственный университет

ЛАБОРАТОРИЯ ИССЛЕДОВАНИЙ ОЗОНОВОГО СЛОЯ И ВЕРХНЕЙ АТМОСФЕРЫ

Спасибо за внимание!

Исследование выполнено в Лаборатории исследований озонового слоя и верхней атмосферы и профинансировано грантом Российского научного фонда №23-27-00166, <u>https://rscf.ru/project/23-27-00166/</u>.