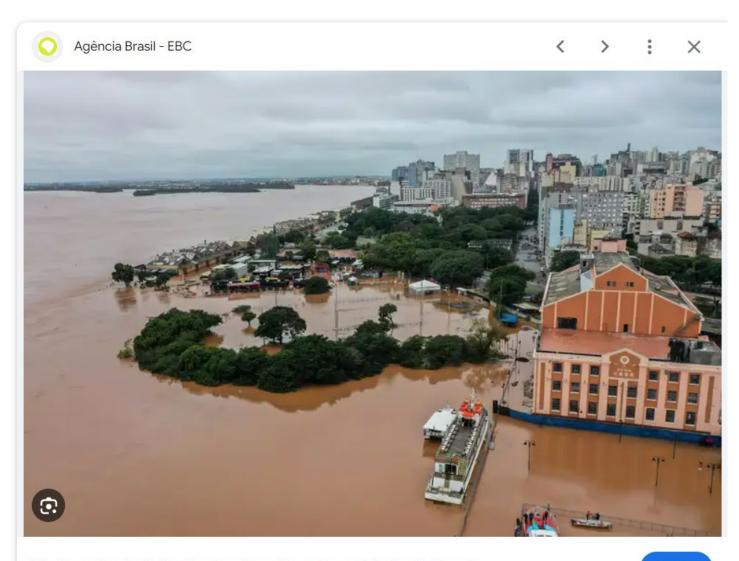
Подспутниковые измерения цвета вод лагуны Патус в период экстремального наводнения летом 2024 г.

Глуховец Д.И., Завьялов П.О., Завьялов И.Б., Моллер О.О. glukhovets@ocean.ru

Lagoa dos Patos

- Самая большая прибрежная лагуна в Южной Америке
- Средняя глубина 5 м
- На воды влияют речной сток, ветер и приливы (0,45 м)
- Во время засухи и попутных ветров морская вода может распространяться практически по всей лагуне (до 200 км к северу)
- Температура воды в июне около 15°C
- Глубина видимости диска Секки около 1 м

31 марта, 2024

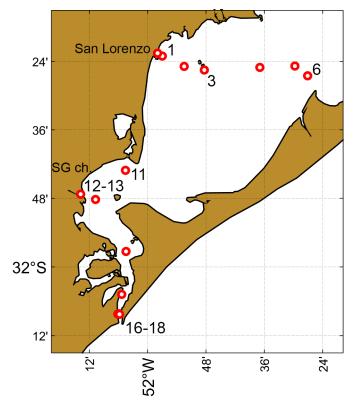


ARG 30°00' URU Legend Guaiba Drainage Basin Camaquã Drainage Basin Mirim's Lagoon Drainage Basin - SGC 120 km

Jung BM, Fernandes EH, Möller Jr OO, García-Rodríguez F. Estimating suspended sediment concentrations from river discharge data for reconstructing gaps of information of long-term variability studies. Water. 2020.

Наводнение летом 2024

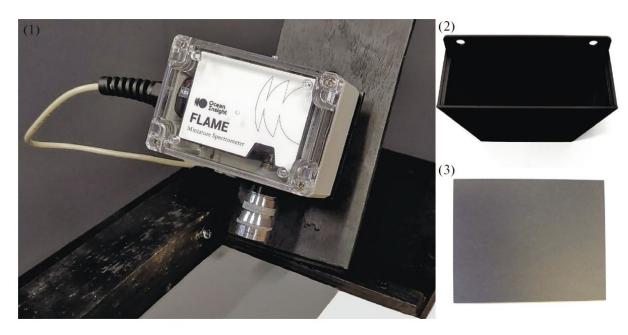
29 апреля 2024 года на штат Риу-Гранди-ду-Сул в Бразилии обрушился шторм



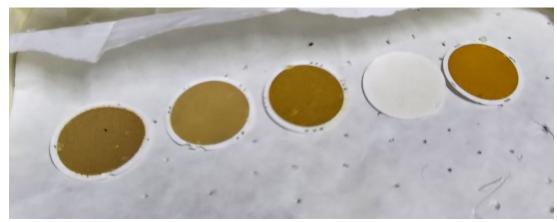
The average discharge in June is around **2200** m^3/s . We have measurements **between 10000** to **22000** m^3/s during the flood period, being most of the days around 16000 m^3/s .

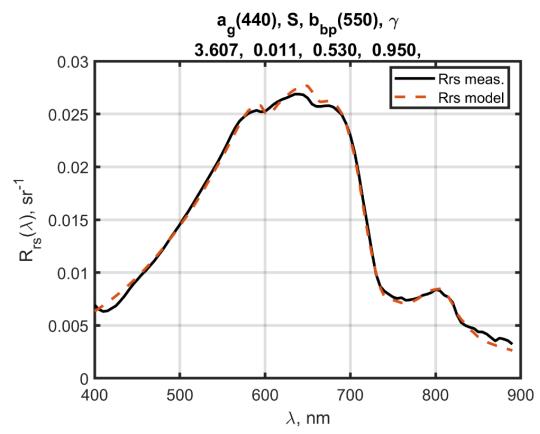
Augusto Cavalcanti, FURG

Экспедиция, 25-26 июня 2024



Экспедиция, 25-26 июня 2024


Основные задачи экспедиции:


- 1. Подспутниковые измерения спектров коэффициента яркости на станциях и переходах между ними;
- 2. Региональная настройка модели GIOP (Werdell et al., 2013) для акватории лагуны Патос;
- 3. Оценка значений показателя поглощения ОРОВ и детрита, а также концентрации взвешенных веществ в период экстремально интенсивного речного стока;
- 4. Валидация спутниковых данных о цвете океана.

Приборы и методы

Палубный спектрорадиометр (1), кювета (2), серый экран (3)

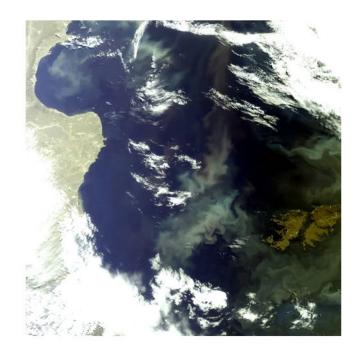
Пример спектра коэффициента яркости, обработанного с помощью региональной версии алгоритма GIOP, станция около Сан-Лоренцо, лагуна Патос, 25 июня 2024 г.

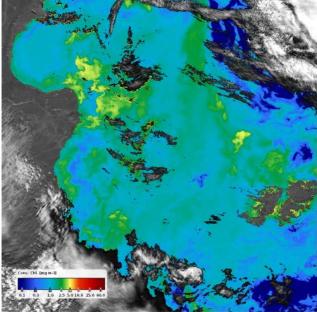
Видимость диска Секки составила около 10 см

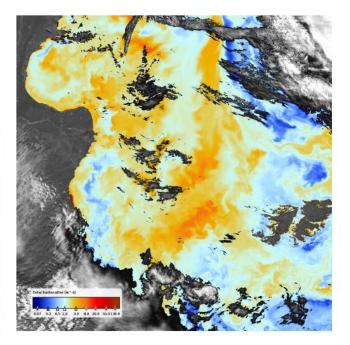
Фильтры

Обработка спутниковых данных

Нестандартная атмосферная коррекция

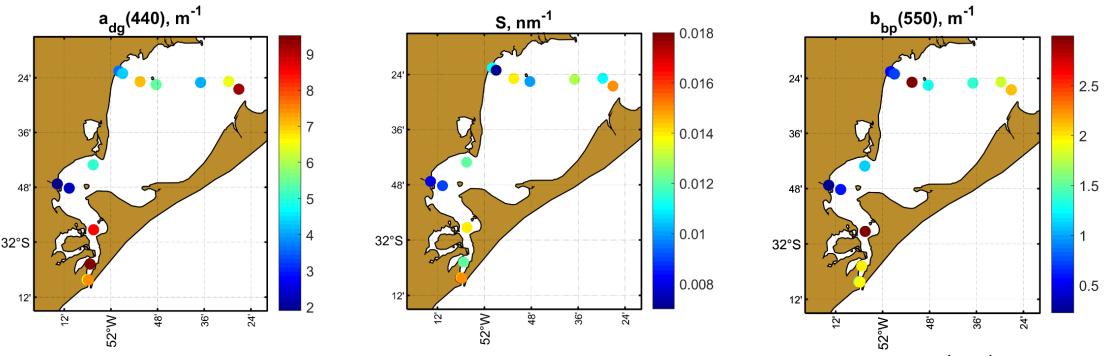



Documentation Developers Neural Nets Contact

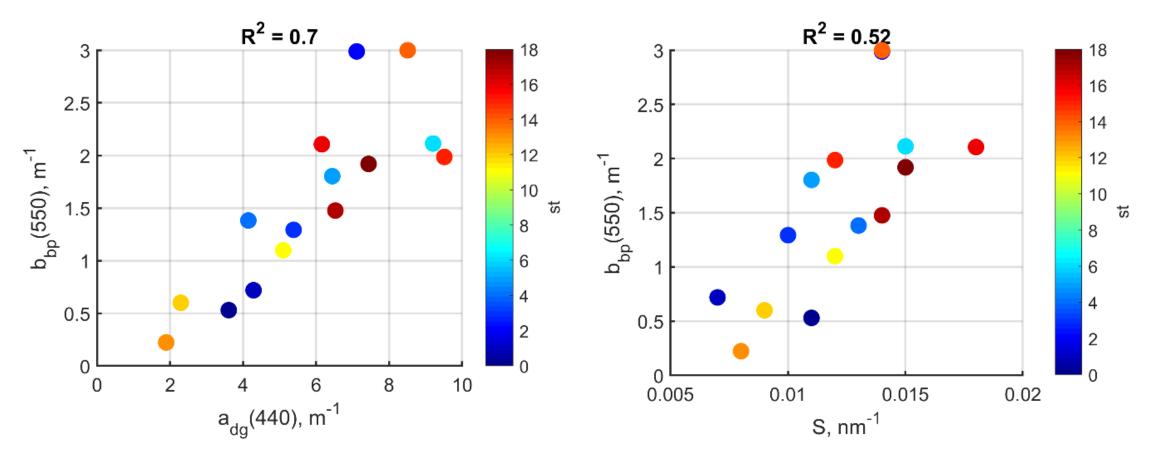


C2RCC Community Project

Atmospheric correction and in-water processing of optical earth observation data



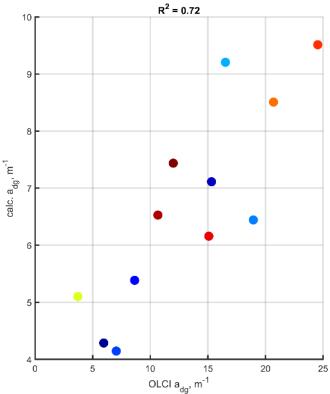
Результаты судовых измерений R_{rs}

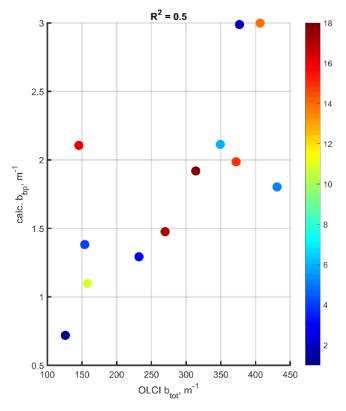

Очень высокая пространственная изменчивость

Для расчета использованы следующие пределы: 1-10 м $^{-1}$ для $a_{\rm dg}$ (440), 0,007-0,026 нм $^{-1}$ для S (Twardowski et al., 2004) и 0,1-3 м-1 для $b_{\rm bp}$ (550). Такой подход позволил значительно улучшить сходимость решения обратной задачи.

Пространственные распределения показателя поглощения желтым веществом на 440 нм $a_{\rm dg}$ (440), спектрального наклона этой величины S, и показателя рассеяния назад частицами взвеси на длине волны 550 нм $b_{\rm bp}$ (550), рассчитанные с использованием модифицированного алгоритма GIOP

Результаты судовых измерений R_{rs}


Диаграммы рассеяния между $a_{\rm dg}$ (440) и $b_{\rm bp}$ (550) (слева), а также S и $b_{\rm bp}$ (550) (справа). Значения коэффициентов детерминации линейной регрессии показаны выше. Цветом показан номер станции.


Результаты

Первое приближение для региональных алгоритмов

OLCI/Sentinel-3B, 25 июня 2024

Диаграммы рассеяния между судовыми и спутниковыми данными (OLCI), обработанными с помощью алгоритма искусственной нейронной сети C2RCC: показатели поглощения OPOB и детритом (слева) и рассеяния частицами (справа)

$$a_{dg}(440) = 0.24* a_{dg}^{OLCI} + 3.5 (N = 12, R^2 = 0.72, RMSE = 1 m^{-1});$$

 $b_{bp}(550) = 0.0044* b_{tot}^{OLCI} + 0.61 (N = 12, R^2 = 0.5, RMSE = 0.51 m^{-1}).$

Заключение

- В южной части лагуны Патус в период чрезвычайно сильного наводнения были выполнены подспутниковые измерения спектров коэффициента яркости
- Проведена региональная модификация биооптической модели GIOP
- Проведена нестандартная атмосферная коррекция данных OLCI верхней части атмосферы с использованием алгоритма нейронной сети C2RCC
- Получено первое приближение для региональных алгоритмов для акватории лагуны Патос

Следующий шаг:

• оценить вклады различных источников пресноводного стока с использованием данных спутниковых сканеров цвета для различных областей лагуны Патус за различные периоды времени