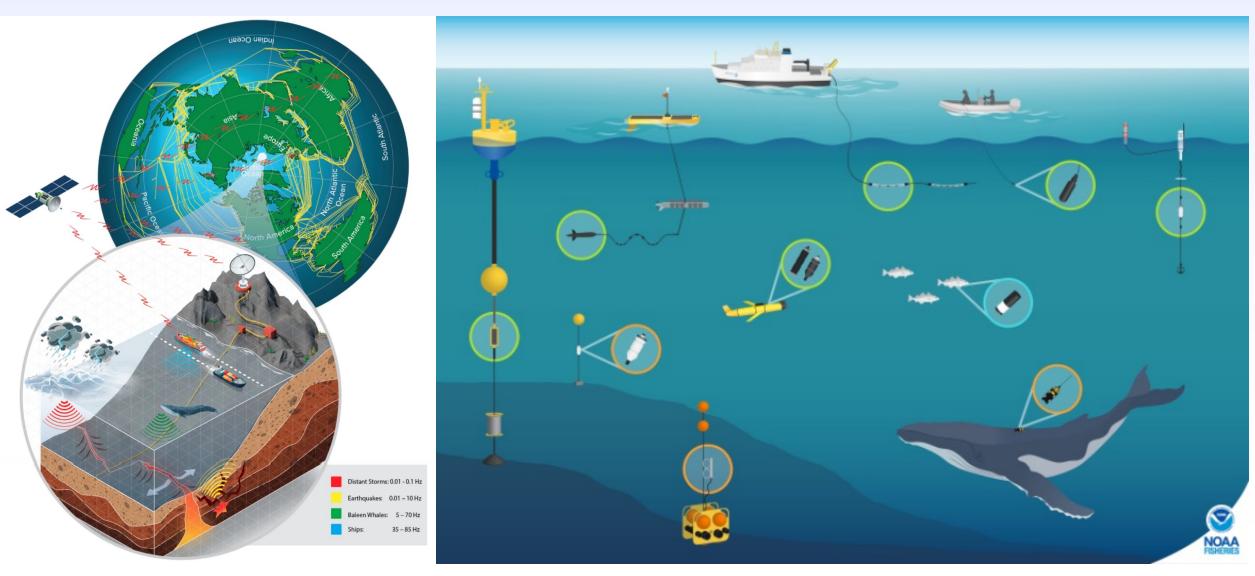



Современные методы ДЗЗ для исследования арктических экосистем: систематический обзор и перспективы

Екатерина Фабер¹

¹ Национальный исследовательский университет, ВШЭ и ФГБУ "ФНКЦ КМ" ФМБА России faber.cat.rina@gmail.com

Доклад подготовлен в рамках участия в проекте «Билет в Арктику» при поддержке «Росатом» и Минобрнауки


ДВАДЦАТЬ ВТОРАЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА Москва, ИКИ РАН, 11-15 Ноября 2024

Polar Bears from Space:
Assessing Satellite Imagery as a Tool to Track Arctic Wildlife (2014)

«Наш первоначальный, независимый обзор изображений был утомительным и потребовал в общей сложности 100 часов; это сделало нереалистичным повторное изучение изображений во второй раз (после нашего совместного изучения точек), а также затруднило набор большего количества наблюдателей. Надежный, автоматизированный процесс значительно улучшит применимость этой техники.» doi: 10.1371/journal.pone.0101513

Сбор и анализ данных

Источники: https://www.fisheries.noaa.gov/feature-story/track-whale-detections-interactive-map (справа)
https://www.nature.com/articles/s41598-022-23606-x/figures/1 (слева)

Цели и задачи мониторинга

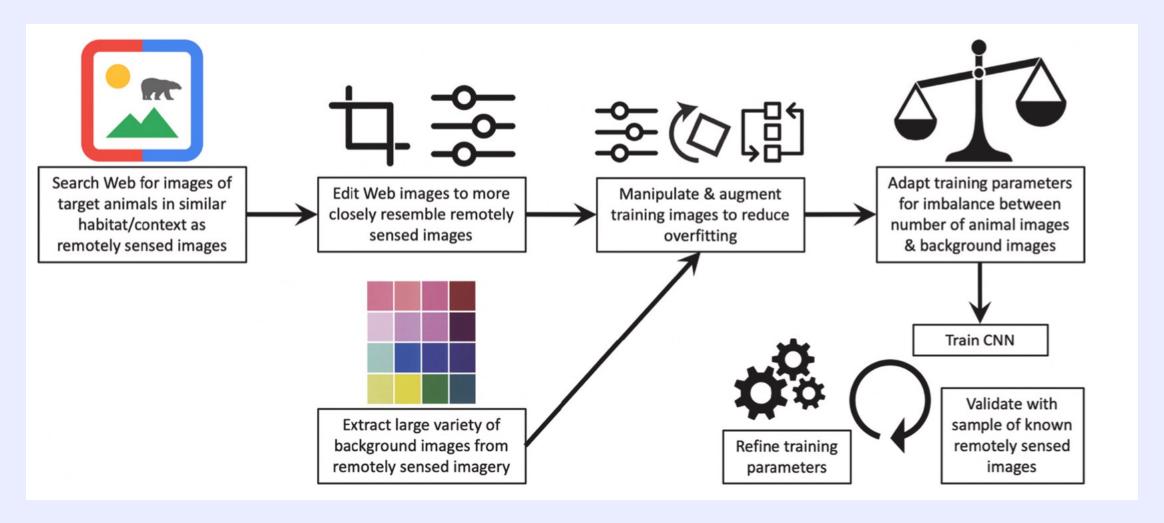
Цели:

- Оценка состояния биоразнообразия в Арктике
- Мониторинг изменений в среде обитания арктических животных
- Прогнозирование последствий изменений климата и человеческой деятельности

Задачи:

- Сбор данных о популяциях ключевых арктических видов
- Анализ миграционных маршрутов и их изменений
- Оценка влияния судоходной деятельности и нефтегазовой промышленности на экосистему

Рассматриваемые данные и методы


Подходящие данные для мониторинга за животными:

- Спутниковая съемка (оптические и радарные изображения)
- · Лазерное сканирование (LiDAR)
- Гиперспектральные снимки
- Примеры используемых спутников (например, Sentinel, Landsat)

Внедрение методов МО и ИИ:

- Алгоритмы машинного обучения для классификации изображений
- Анализ миграционных маршрутов с помощью ИИ
- Оценка состояния среды обитания с использованием нейронных сетей

Процесс обучения

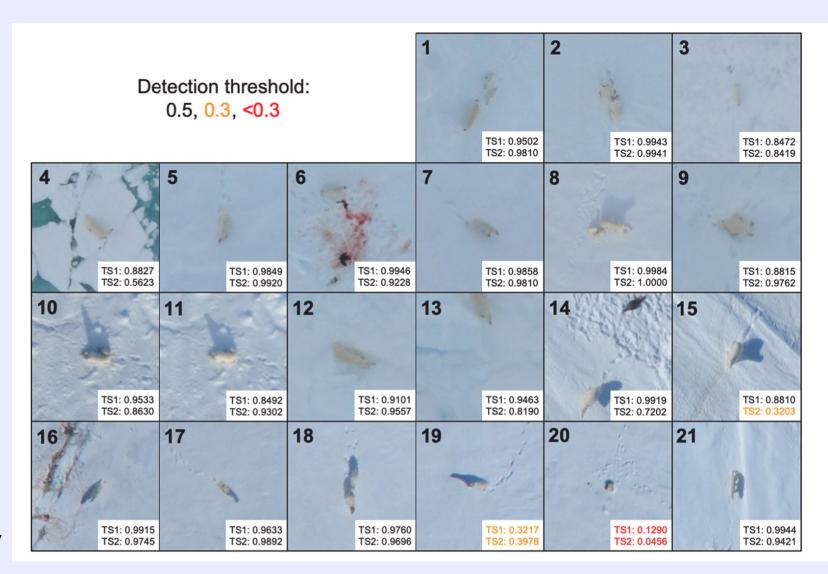


Рисунок: Общий рабочий процесс использования различных веб-изображений животных для обучения глубокой сверточной нейронной сети (CNN) с целью обнаружения животных в обширном наборе изображений, полученных с помощью дистанционного зондирования, когда в наборе изображений слишком мало априори известных экземпляров животных для обучения CNN. https://doi.org/10.1016/j.ecoinf.2021.101547

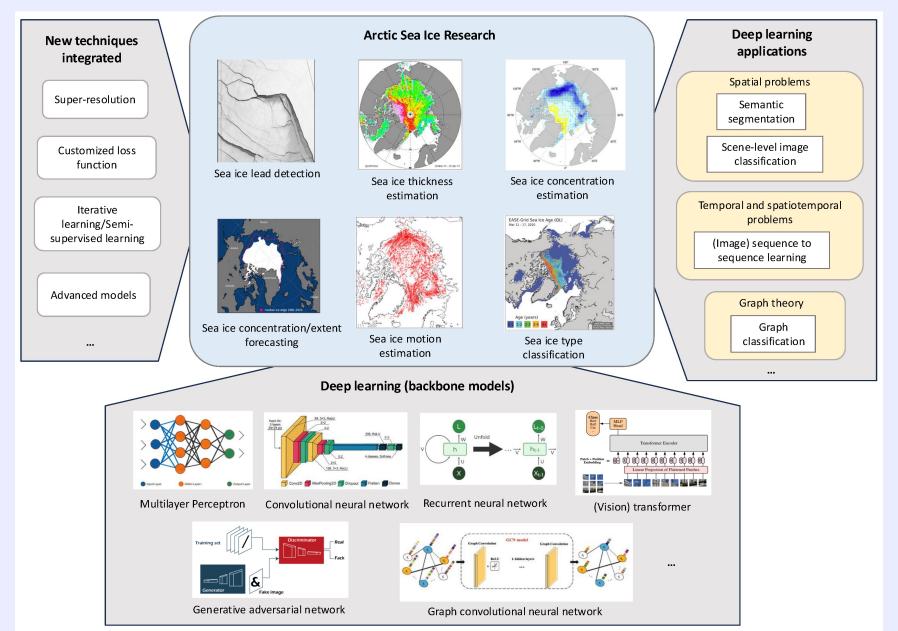

Результаты обучения

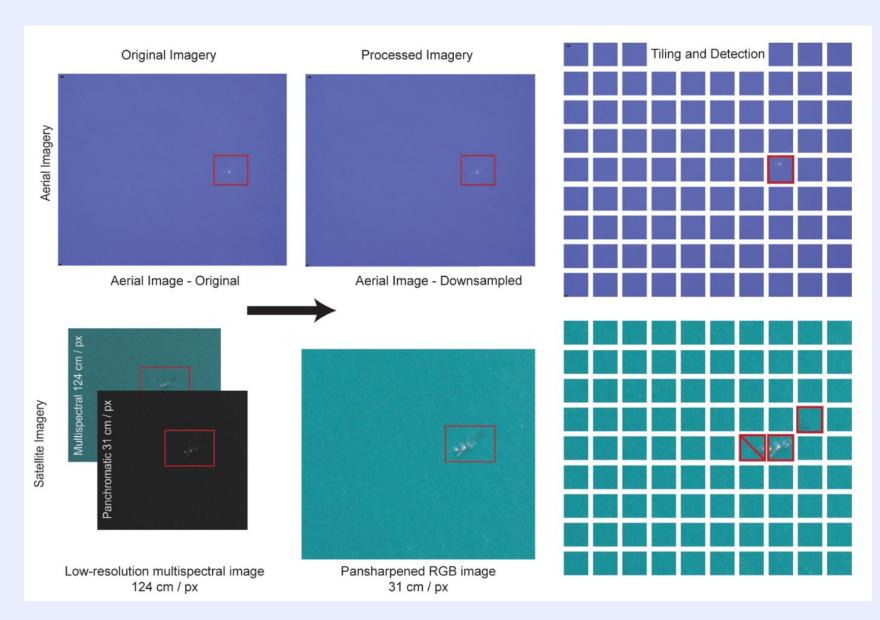
Рисунок:

Коллаж из всех известных изображений белых медведей, полученных во время аэрофотосъемки залива Баффина в 2010 году, обрезанных до фрагментов размером 224 × 224 пикселя. Изображения с соответствующими буквами представляют одного и того же медведя, запечатленного на двух последовательных фотографиях. Вероятности присутствия белых медведей на изображениях по оценкам глубокой нейронной сети (ResNet-50), обученной с использованием веб-изображений белых медведей после первого (TS1) и второго (TS2) этапов обучения. https://doi.org/10.1016/j.ecoinf.2021.101547

Методы обучения

Методы обучения: распознавание среды

Методы глубокого обучения для оценки:


- толщины морского льда
- концентрации морского льда
- прогнозирования концентрации морского льда
- движения морского льда
- классификации типов морского льда

Sea Ice Application	Deep Learning Problem Formulated	Deep Learning Techniques (Models)	Output	References
Sea ice thickness estimation	Regression	Regression fully connected neural network	Thematic maps showing sea ice thickness	[<u>48]</u>
		Convolutional neural network (1D CNN, attention-based CNN)		[41,44,49]
	Clustering	Deep scattering network		[<u>52</u>]
	Time-series forecasting	Recurrent neural network (PredRNN++), hybrid deep learning model	Near-term forecast of sea ice thickness, creating continuous sea ice thickness maps in future timestamps	[<u>45,53</u>]

https://doi.org/10.3390/rs16203764

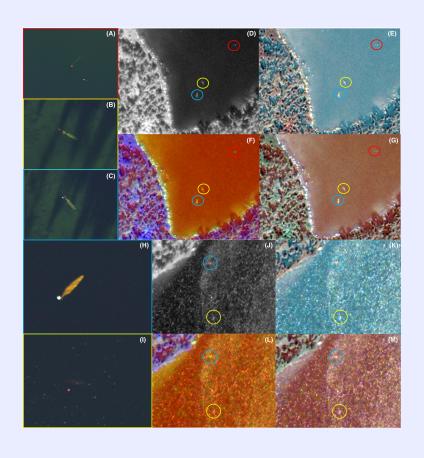

Процесс распознавания: сегментация

Рисунок: Автоматизированный рабочий процесс. Аэрофотоснимки (выше) подвергаются понижению разрешения, мозаичное разделение и затем используются для обучения модели. Спутниковые снимки (ниже) подвергаются обработке (панхроматическая резкость) и мозаичному изображению, прежде чем модель сможет обнаружить китов. Спутниковые снимки опубликованы по лицензии СС ВУ с разрешения DigitalGlobe Foundation, оригинальные авторские права 2014 г.https://doi.org/10.1371/journal.pone. 0212532.q001

Результаты

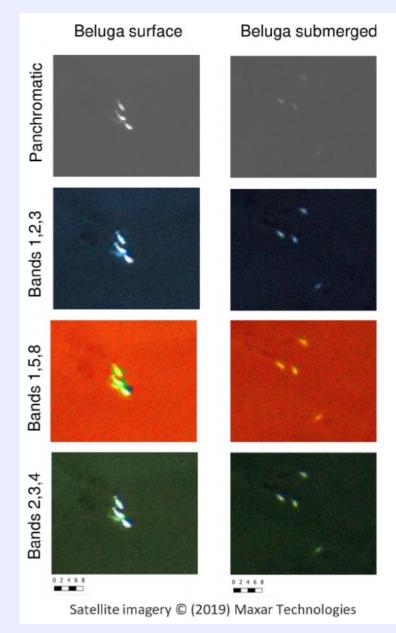


Рисунок:

Предобработанные изображения белух на поверхности и под водой из WorldView-3imagery в масштабе 1:177. Переиздано по лицензии СС ВУ с разрешения Maxar Technologies. Подсчет арктических китов из космоса https://doi.org/10.1371/journal.pone.0254380

https://zslpublications.onlinelibrary.wiley.com/doi/10.1002/rse2.396 (слева)

Дальнейшее развитие

Происходят улучшения в аналитических методах, таких как глубокое машинное обучение, которое позволит аналитикам извлекать больше информации из снимков с очень высоким разрешением

- 1. Адаптация существующих моделей: Можно адаптировать уже обученные модели для распознавания льда, добавив в них дополнительные слои или изменив архитектуру сети, чтобы она могла обрабатывать изображения с животными. Это может включать использование методов переноса обучения, где предварительно обученная модель дообучается на новом наборе данных с изображениями животных.
- **2. Распознавание поведения:** Разработка моделей для анализа поведения животных на льду. Это может быть полезно для мониторинга миграционных паттернов, поиска пищи или взаимодействия между видами.
- **3. Интеграция с другими технологиями:** Использование ИИ в сочетании с датчиками и беспилотными летательными аппаратами (дронами) для автоматизированного мониторинга и сбора данных о животных на льду.