

Использование нейронных сетей и методов машинного обучения в исследованиях и разработках Дальневосточного центра «НИЦ «Планета»

Докладчик: к.т.н., Кучма Михаил Олегович

XXI Международная научная Школа-конференция молодых ученых по фундаментальным проблемам дистанционного зондирования Земли из космоса

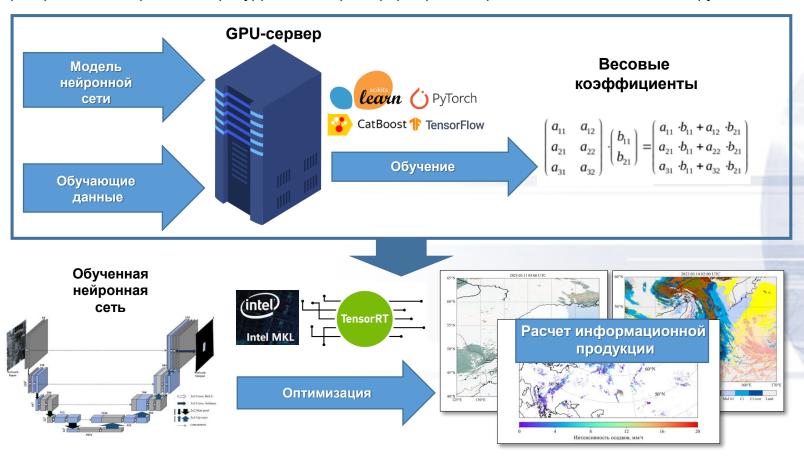
Актуальность нейронных сетей

- ✓ Сопоставимая или превосходящая точность при сопоставлении с физическими и эмпирическими алгоритмами
- ✓ Выявление неявных связей и их использование для создания информационного продукта
- ✓ Быстрое время создания алгоритма и запуск его в оперативную работу



Использование методов искусственного интеллекта

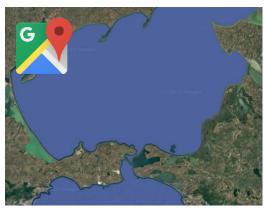
В Дальневосточном центре НИЦ «Планета» для получения спутниковой информационной продукции широко применяются методы искусственного интеллекта (ИИ) на основе алгоритмов машинного обучения, в том числе нейронные сети: полносвязные прямого распространения, сверточные и рекуррентные, трансформеры, генеративно-состязательные и другие.



Для получения алгоритмов на основе ИИ необходима обучающая выборка сверх большого объема, включающая все возможные условия наблюдений. Обучение ИИ-моделей – многократно повторяющийся итеративный процесс, требующий больших вычислительных мощностей. Для обучения моделей применяются специализированные GPU-серверы, которые позволяют на порядок повысить скорость обработки в сравнении с обработкой на центральном процессоре и в несколько раз – в сравнении с обработкой на рабочей станции с одним графическим ускорителем.

В каком виде использовать спутниковые данные?

Снимки Google Maps



Снимки в формате JPEG, PNG

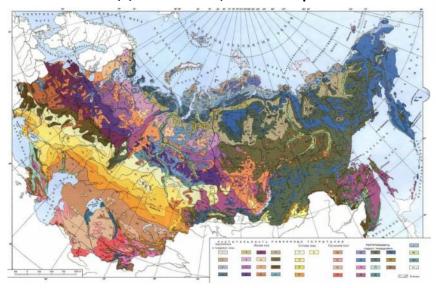
Физические величины:

- ✓ Radiance СПЭЯ (спектральная плотность энергетической яркости), $B\tau/m^2 \cdot cp$
- ✓ Reflectance КСЯ (коэффициент спектральной яркости), %
- ✓ Brightness temperature яркостная температура, К

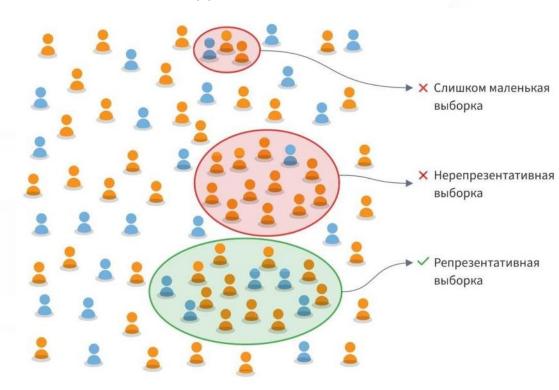
Что важно учитывать?

Сезонность

Тип подстилающей поверхности

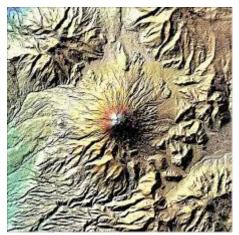


Количество данных и баланс классов

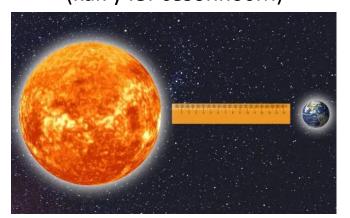


Какие еще данные можно использовать?

ЦМР (цифровая модель рельефа)

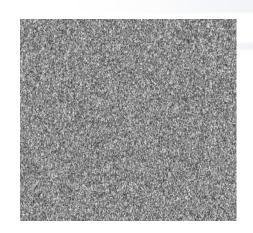


Расстояние до солнца в а.е. (как учет сезонности)



Данные радиозондирования

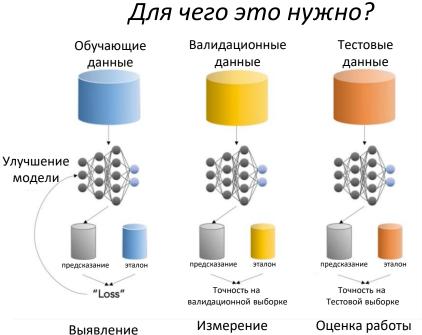
Белый шум



ЧПП (численный прогноз погоды)

Эталонные измерения

Разделение

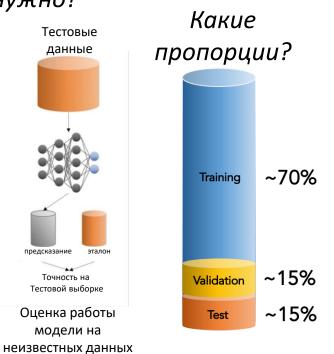


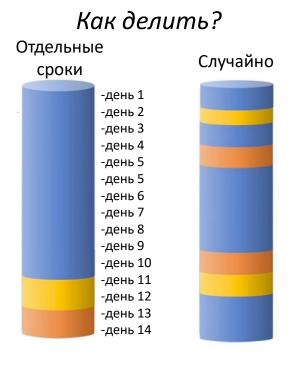
прогресса

обучения

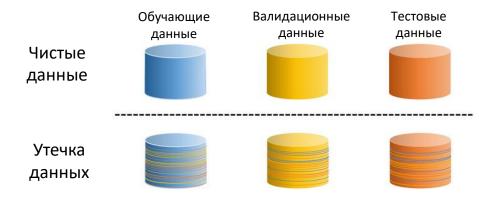
закономерностей

модели на

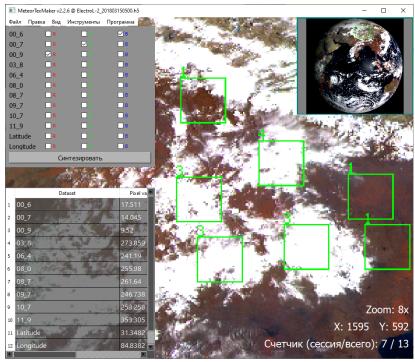




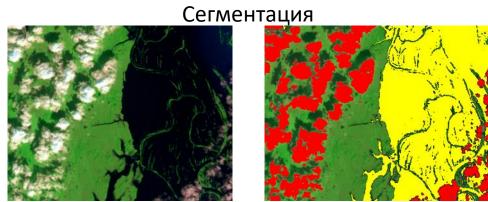
Что будет, если делить данные неправильно?



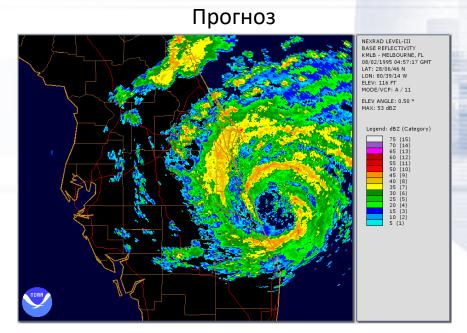
Классификация



Специализированное ПО для разметки данных



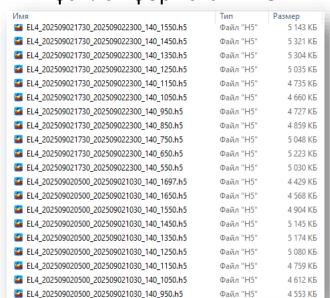
Ручное сегментирование данных



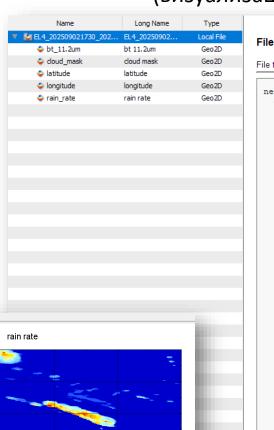
Нарезка сегментов разновременных данных

Хранение обучающей выборки

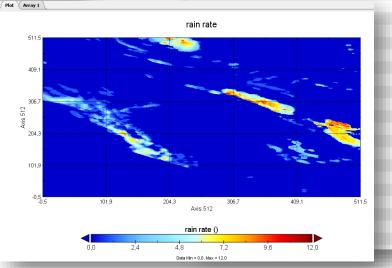
Хранение в одном или нескольких файлах формата HDF5



Внутренняя структура файла HDF5 (визуализация в Panoply)



Визуализация одного примера

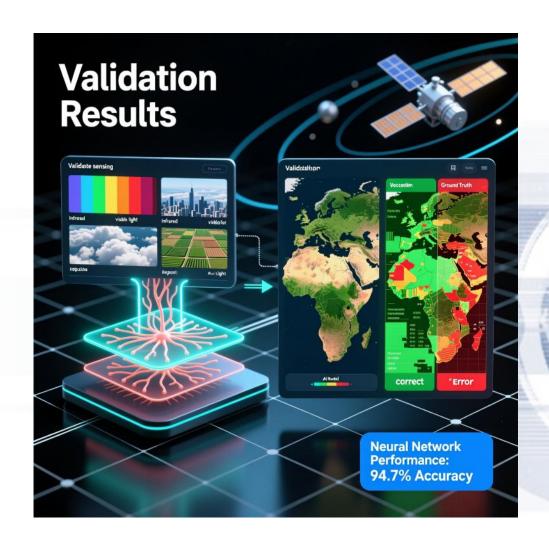


File "EL4 202509021730 202509022300 140 550.h5" File type: Hierarchical Data Format, version 5 netcdf file:///d/niokr/Mikhail/Out/DsForNowcastTrain float bt 11.2um(12, 512, 512); :min = 0.21f; // float :max = 298.02f; // float:mean = 264.23947f; // float :std = 43.8561f; // float : ChunkSizes = 2U, 64U, 64U; // uint float cloud mask(12, 512, 512); :min = 0.0f; // float :max = 1.0f; // float:mean = 0.4604826f; // float :std = 0.4984359f; // float : ChunkSizes = 2U, 64U, 64U; // uint float latitude (512, 512); :min = 28.783941f: // float:max = 65.71573f; // float:mean = 42.026592f; // float :std = 8.580802f; // float : ChunkSizes = 64U, 64U; // uint float longitude (512, 512); :min = 93.65393f; // float :max = 151.72133f; // float :mean = 133.0541f; // float :std = 11.167198f; // float : ChunkSizes = 64U, 64U; // uint float rain rate(12, 512, 512); :min = 0.0f; // float :max = 22.0f; // float:mean = 0.33979163f; // float :std = 1.2634016f; // float : ChunkSizes = 2U, 64U, 64U; // uint // global attributes: :start i = 140; // int :start j = 550; // int :step = 512; // int

Валидация результатов

- Сравнение необходимо проводить с:
- *in-situ* данные
- аналогичные продукты (зарубежные или отечественные)
- другие доступные эталонные данные

 Необходимо использовать корректные метрики для оценки точности

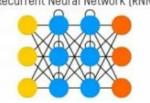


Виды используемых нейронных сетей

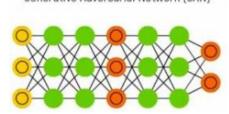
- Входы нейронной сети
- Нейроны с обратными связями
- Зашумленные входы нейронной сети
- Скрытые нейроны
- Вероятностные скрытые нейроны
- Импульсные нейроны
- Капсульные нейроны
- Выходы нейронной сети
- Нейроны сравнения входов и выходов
- Нейроны с рекуррентными или неполными связями
- Нейроны памяти
- Нейроны памяти с фильтром
- Ядро
- Свертка

Многослойная нейронная сеть прямого распространения

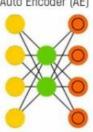
Рекуррентная нейронная сеть Recurrent Neural Network (RNN)



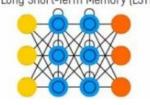
Генеративная состязательная сеть Generative Adversarial Network (GAN)



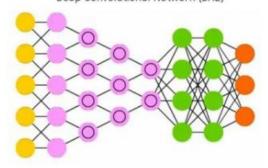
Автоэнкодер Auto Encoder (AE)

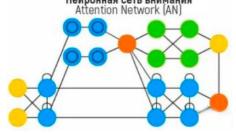


Нейронная сеть долгой краткосрочной памяти Long Short-Term Memory (LSTM)

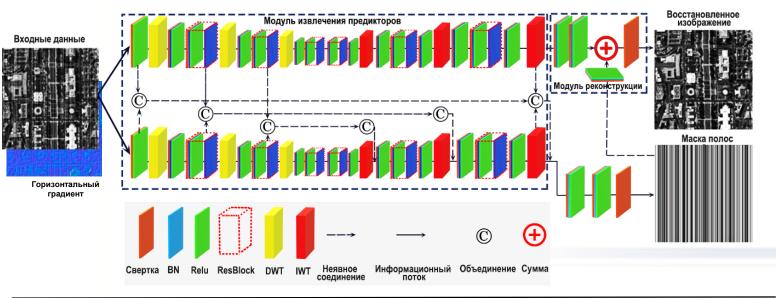


Глубокая сверточная нейронная сеть Deep Convolutional Network (DAE)

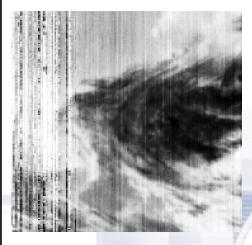




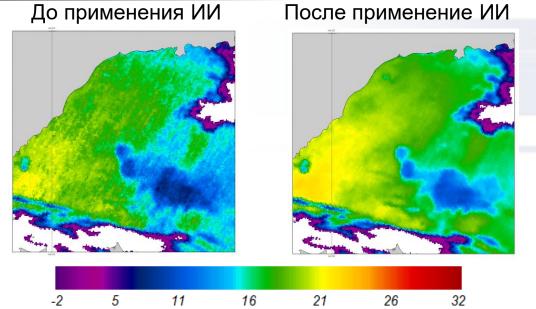
Минимизация помех в ИК каналах МСУ-ГС КА Арктика-М № 1 с помощью сверточной нейронной сети



Исходные данные



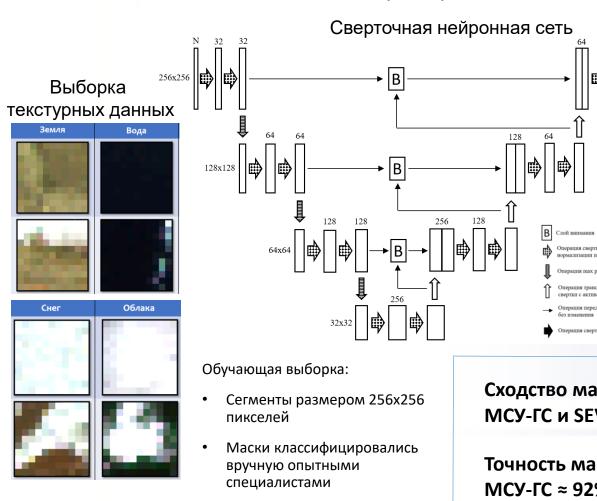
Карта температуры поверхности океана, °С



После нейросети

Маска облачности по данным Арктика-М

по данным прибора МСУ-ГС КА серии Арктика-М



Выборка охватывает период с июня 2022 по март 2023

Общий объем выборки: 17 тыс.

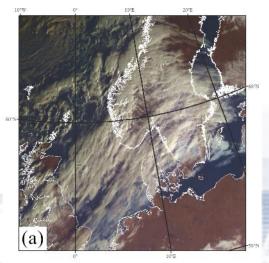
сегментов

Сходство масок по данным МСУ-ГС и SEVIRI ≈ 93%

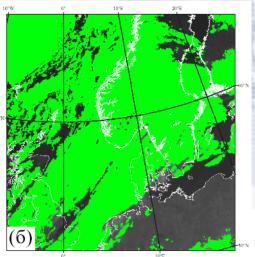
Точность масок по данным МСУ-ГС ≈ 92%

Точность масок по данным SEVIRI ≈ 94%

Мультиспектральное изображение

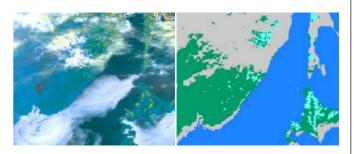


Маска облачности



Использование сверточных нейронных сетей CNN

Карта распределения снежного покрова по данным прибора МСУ-МР КА Метеор-М №2



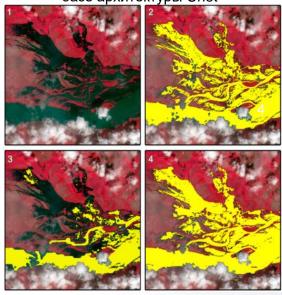
Используется полносверточная нейросетевая архитектура для классификации типов подстилающей поверхности. Входной информацией являются текстурные изображения размером 32х32 пикселя

Примеры цветосинтезированных текстурных изображений снега и облачности

Kramareva L. S., Andreev A. I., Simonenko E. V. et al. The use of a convolutional neural network for detecting snow according to the data of the multi-channel satellite device of meteor-M No.2 spacecraft // Procedia Computer Science: Proceedings of the 13th International Symposium "Intelligent Systems", INTELS 2018, St. Petersburg, 22–24 October 2018. – St. Petersburg: Elsevier B.V. – 2019. – P. 368-375

Детектирование разлива реки Амур по данным приборов MSI и OLI KA Sentinel-2 и Landsat-8

Модель классификации: сверточная сеть на базе архитектуры Unet

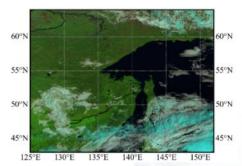


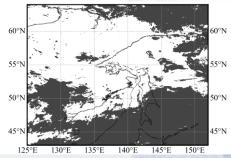
Оценка точности на 6000 тестовых участках. При сравнении с эталонными картами: Precision – 94.51%, Recall – 89.95% F1-measure – 92.17%

При сравнении с Sentinel Scene Classification: Precision – 85.45%, Recall – 79.84%, F1-measure – 82.55%

Kuchma M. O., Shamilova Y. A., Amelchenko Y. A., Andreev A. I., Kholodov E. I. Near-real-time flood mapping of the Amur River basin from sentinel-2 MSI data using deep learning // International Conference on Remote Sensing of the Earth: Geoinformatics, Cartography, Ecology, and Agriculture, Душанбе, 19-21 апреля 2022 года / Таджикский технический университет имени академика М.С. Осими. - Душанбе: Таджикский технический университет имени академика М.С. Осими. - 2022. -С. 1229602.

Обнаружение облачности по данным КА Himawari-8/9:





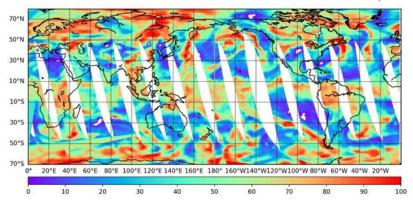
Ансамбль из 9 сверточных нейросетевых классификаторов на основе спектральной и текстурной информации

Значение F1-меры в сравнении с маской облачности Himawari по данным NOAA: 87,5% и 83,98% для светлого и темного времени суток

Андреев, А.И. Оценка эффективности ансамбля нейросетей для маскирования облачности по данным спектрорадиометра АНІ космического аппарата Нітаwari-8/9 / А.И. Андреев, С.И. Мальковский, М.О. Кучма, Ю.А. Шамилова // Компьютерная оптика. — 2025. — Т. 49, № 14-С. 451-460. — DOI: 10.18287/2412-6179-CO-1525

Использование сетей MLP

Карта суточного композита профиля влажности на уровне 700 гПа по состоянию на 2021.04.26 по данным МТВЗА-ГЯ КА Метеор-М №2-2

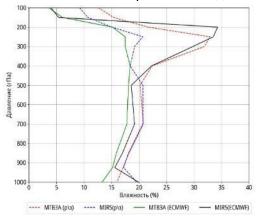


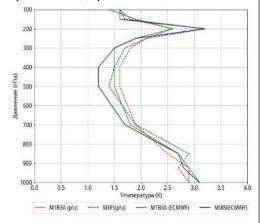
Обучающие данные: ECMWF-ERA5 (около 30 млн. примеров); **Входные данные:** измерения в каналах прибора МТВЗА-ГЯ, широта, высота над уровнем моря;

Модель: многослойный персептрон с 3 скрытыми слоями;

Выходная информация: температура и влажность на 37 изоб. уровнях.

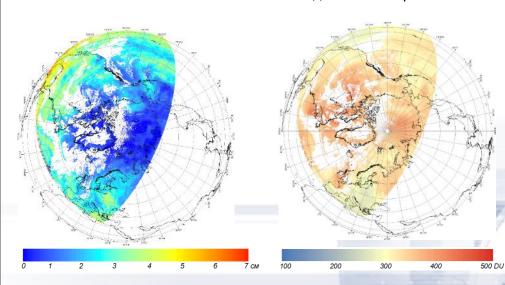
Точность в сравнении с данными радиозондирования и ECMWF





Филей А. А., Андреев А. И., Успенский А. Б. Использование искусственных нейронных сетей для восстановления температурновлажностного состояния атмосферы по данным спутникового микроволнового радиометра МТВЗА-ГЯ КА Метеор-М № 2-2 //Исследование Земли из космоса. — 2021. — №. 6. — С. 83-95.

Карты общего содержания озона (слева) и водяного пара (справа) по состоянию на 2022.06.26 17:00 UTC по данным КА Артика-М №1



Обучающие данные: приборы OMPS КА Suomi NPP (225 тыс. точек); Входные данные: измерения в ИК каналах прибора МСУ-ГС, профиль температуры, приземное давление, зенитные углы наблюдения; Модель: многослойный персептрон с 4 скрытыми слоями.

Ошибка RMSE определения озона: 0.41 см (эталон AERONET) Ошибка RMSE определения водяного пара: 19 DU (эталон WOUDC)

Блощинский, В. Д. Определение содержания водяного пара в столбе атмосферы по данным КА "Электро-Л" №3 с использованием нейронных сетей / В. Д. Блощинский, А. А. Филей, Е. И. Холодов // Оптика атмосферы и океана. — 2021. — Т. 34. — № 10(393). — С. 808-811.

В. Д. Блощинский, М. О. Кучма, А. В. Кухарский. Определение общего содержания озона в столбе атмосферы по данным КА Электро-Л № 3 с использованием нейронных сетей // Исследование Земли из космоса. — 2022. — № 4. — С 79-85.

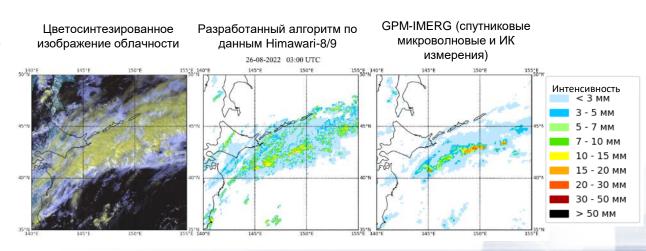
Использование визуальных трансформеров ViT

Обучающие данные: измерения в рамках проекта GPM IMERG (около 500 тыс. текстурных изображений);

Входные данные: измерения КА Himwari-8/9 в ИК каналах, микро- и макрофизические параметры облачности, представленные в виде изображений 5х5 пикселей;

Модель: визуальный трансформер на основе SWIN-Unet для обнаружения осадков, сверточная сеть для оценки интенсивности осадков;

Выходная информация: поля осадков и значения мгновенной интенсивности в мм/ч.



Валидация в сравнении с данными проекта GPM IMERG

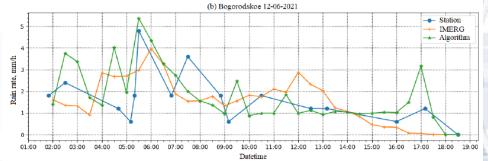
	POD	FAR	CSI	F1	RMSE,мм/ч	Bias, мм/ч	Pearson
День	0.76	0.27	0.66	0.75	1.28	-0.43	0.45
Ночь	0.74	0.25	0.69	0.76	1.64	0.44	0.46
Сутки	0.73	0.28	0.64	0.73	1.33	-0.13	0.45

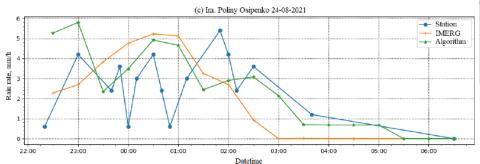
Сравнение накопленных сумм осадков с наземными измерениями на станциях за месяц (август 2023):

Станции (141 насел. пункт): 10033 мм

Алгоритм: 10383 мм GPM IMERG: 4924 мм

Численная модель CosmoRu-6: 8210 мм





Наукастинг осадков по данным Himawari

Краткосрочный прогноз осадков (наукастинг) на срок до 2 часов

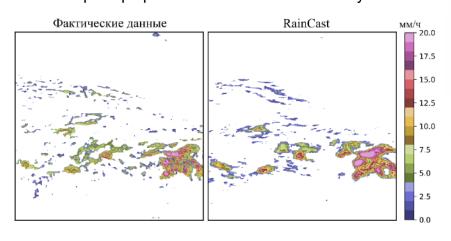
Прогноз, минут

Обучающие данные: результаты расчета осадков по данным Himawari-8/9 ранее представленным алгоритмом (около 20 тыс. временных последовательностей);

Входные данные: изображения интенсивности осадков; **Модель:** детерминированная NowcastNet сверточной архитектуры; автоэнкодер – генеративно-состязательная модель на основе трансформера; статистическая модель – диффузии на основе трансформера;

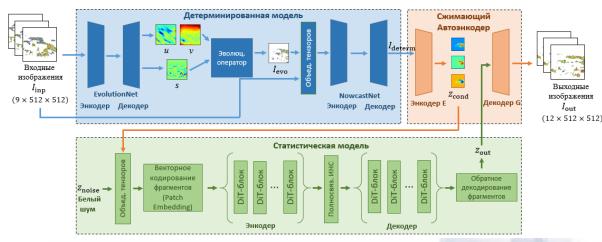
Выходная информация: двухчасовая последовательность изображений интенсивности в мм/ч.

Пример прогноза RainCast на 120 минут

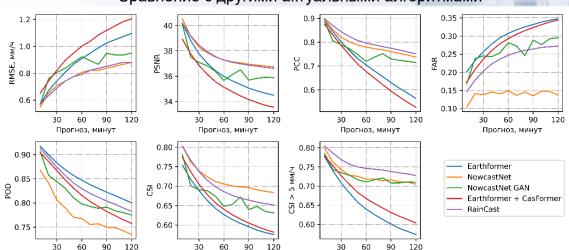


Андреев А. И. и др. RainCast: Гибридный алгоритм наукастинга интенсивности осадков по данным спутниковых наблюдений КА Himawari-8/9 //Информатика и автоматизация. — 2025. — Т. 24. — №. 4. — С. 1085-1113.

Алгоритм прогноза RainCast



Сравнение с другими актуальными алгоритмами



Прогноз, минут

Прогноз, минут

Оптимизация процесса обработки спутниковой информации

Проблемы обработки

- Долгие вычисления на CPU
- Отсутствие распараллеливания расчётов

• Низкая точность

Аппаратное решение проблем (применение GPU)

x2 - x100

- Увеличение скорости обработки однотипных операций для больших объемов данных
- Гибкие возможности для распараллеливания

Программное решение проблем

(применение новых библиотек и технологий)

- Применение специализированных библиотек для распараллеливания задач
- Внедрение новых алгоритмов обработки данных

Пример успешной оптимизации

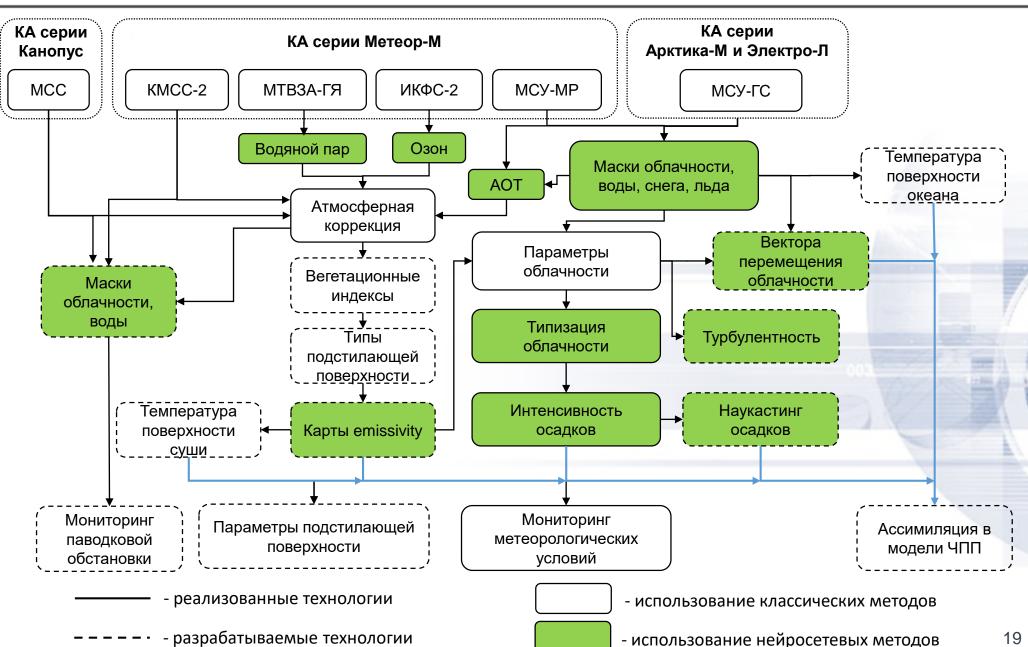
Получение маски облачности по данным МСУ-МР с помощью нейронной сети

Изначальный алгоритм Время обработки 3 часа

Распараллеливание и оптимизация (Numba, Numpy), изменение квантизации Время Время

Время обработки **40 секунд**

Комплексное использование данных российских КА



Спасибо за внимание!

Россия, г. Хабаровск, ул. Ленина, д. 18

тел.: 8-(4212) 21-43-11 факс: 8-(4212) 21-40-07

e-mail: m.kuchma@dvrcpod.ru