

Глубокое обучение в задачах дистанционного зондирования атмосферы с примерами детектирования мезомасштабных конвективных систем

Михаил Криницкий

Лаборатория машинного обучения в науках о Земле МФТИ

Михаил Криницкий

K.T.H.

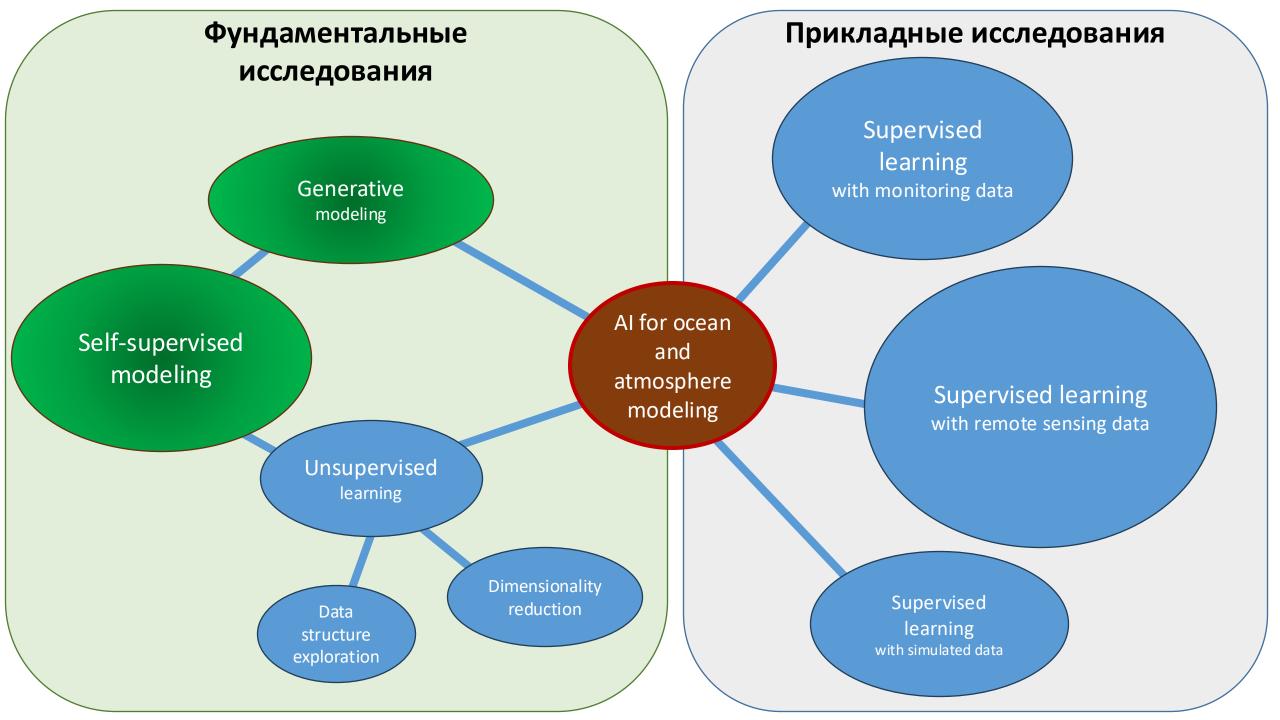
Лаборатория машинного обучения в науках о Земле МФТИ

Что мы делаем:

Разрабатываем, адаптируем, анализируем поведение алгоритмов машинного обучения и глубокого обучения в прикладных и фундаментальных задачах наук о Земле

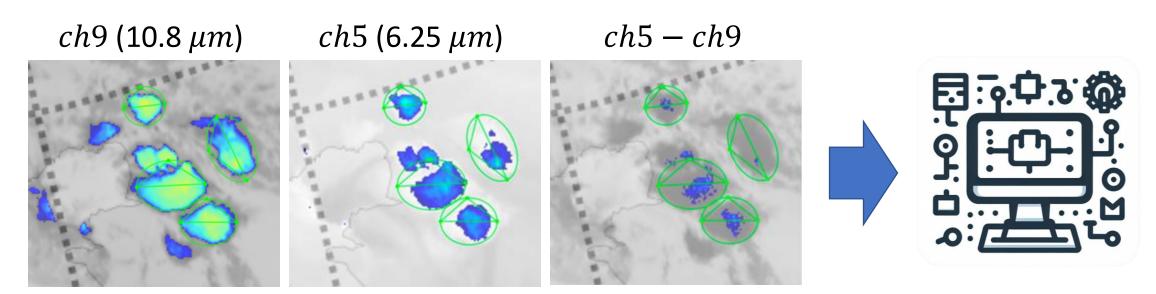
krinitsky.ma@phystech.edu

https://t.me/mkrinitskiy



ИИ для обнаружения феноменов

Обнаружение мезомасштабных конвективных систем в данных дистанционного зондирования Земли из космоса

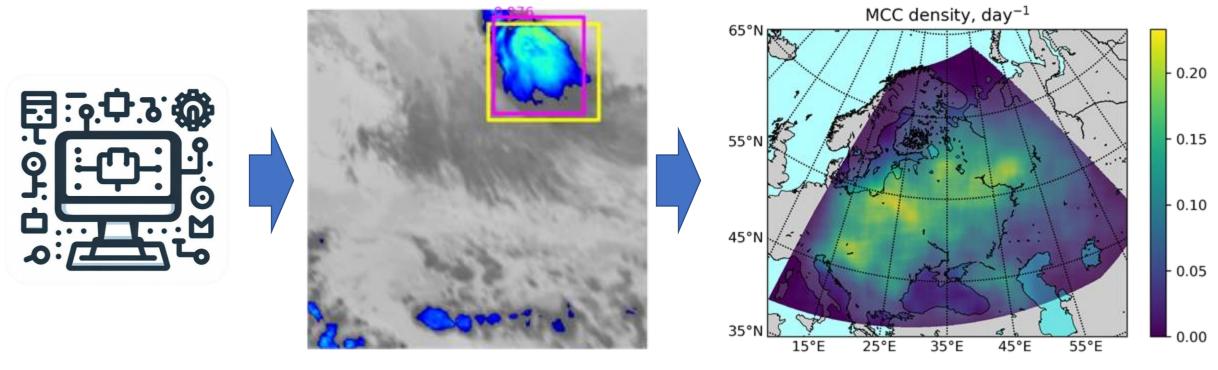


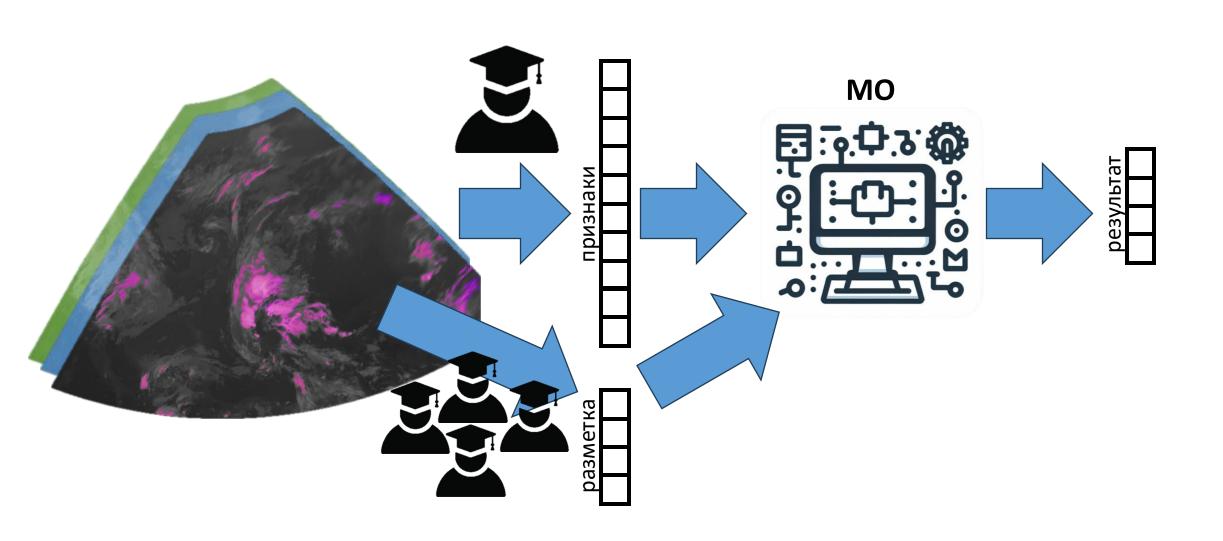
Meteosat (MSG4) data, European territory of Russia

ИИ для обнаружения феноменов

Обнаружение мезомасштабных конвективных систем в данных дистанционного зондирования Земли из космоса

*ch*9 (10.8 μ *m*)

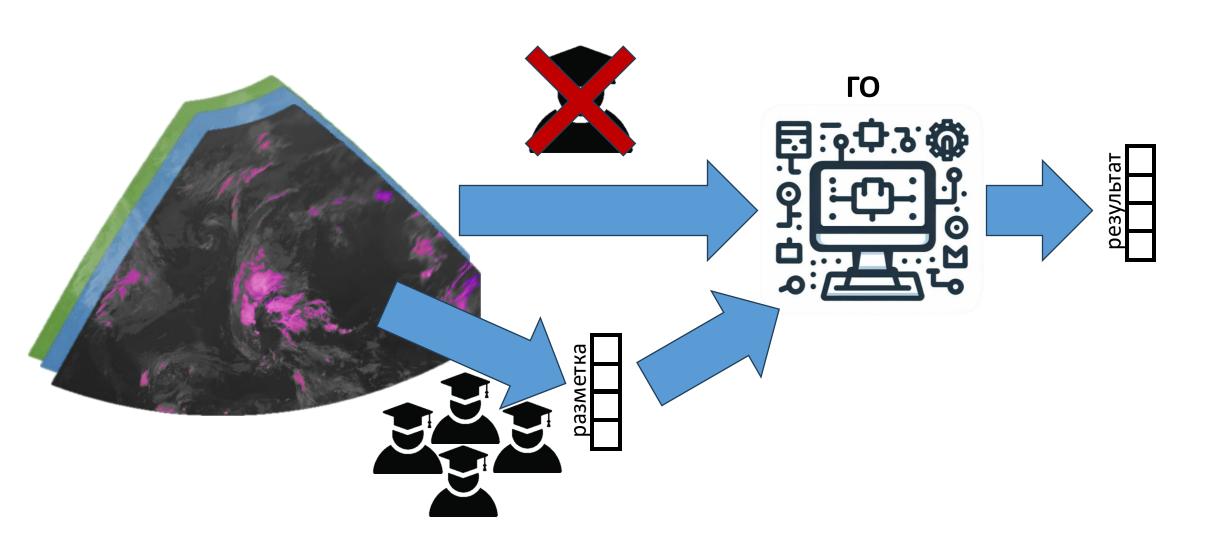




Порождение признаков – забота исследователя

Сложно применять «классические» методы МО на не- векторных данных

Сложно создать разметку в постановках задач для векторных данных



Модель выучивает признаки самостоятельно

Легко применять на не- векторных данных

Существуют проработанные подходы (архитектуры, методы обучения) для пространственно распределенных данных

Легче создавать разметку: интуитивно, удобно

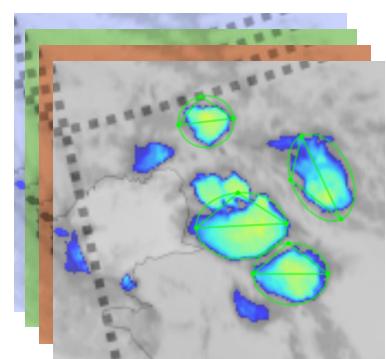
Особенности атмосферных данных

 Данные скоррелированы во времени и пространстве

• Феномены – редкие события, высокое соотношение background/foreground

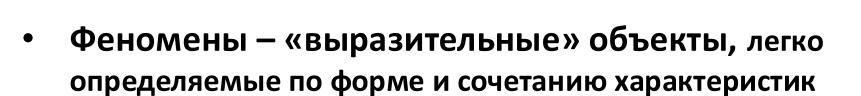
• Количество каналов обычно не 3

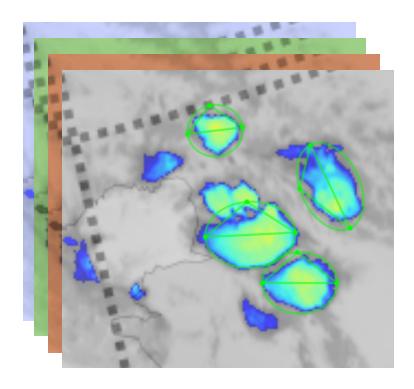
• Распределение признаков отличается от ImageNet



Нейросети для обнаружения феноменов?

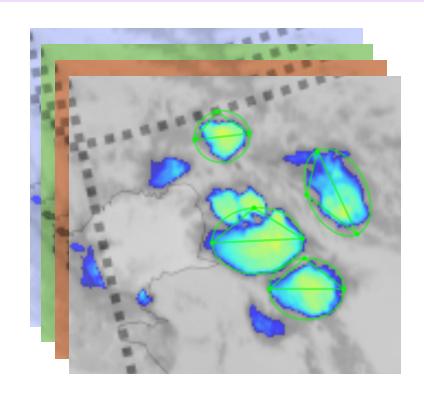
- Правило: если человек видит/находит, то сможет и нейросеть, нужно только...
 - много данных
 - много разметки





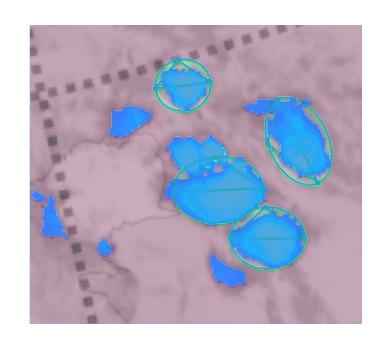
Общая постановка задачи

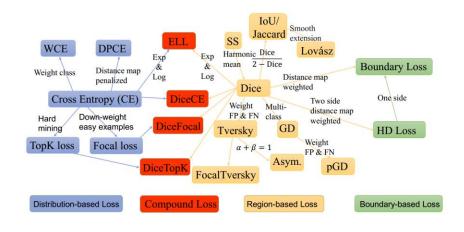
- Признаки: X(ch, lat, lon, t)
- Цель: найти области, которые:
 - связны в пространстве
 - устойчивы во времени
 - физически осмысленны (отражают явление)



Семантическая сегментация

- Цель: каждому пикселю на карте присвоить класс принадлежности области явления / фону
- Для каждого пикселя решается задача классификации с использованием пространственного (+временного) контекста
- Архитектуры нейросетей: U-Net, U-Net++, DeepLabv3(+), PSPNet
- Функции потерь: cross-entropy, Dice loss, IoU loss...





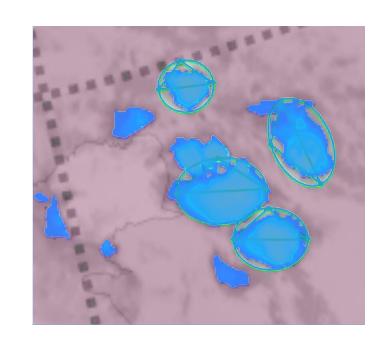
Семантическая сегментация

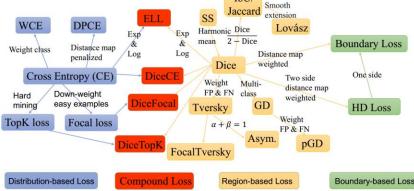
(при удачном решении) точные границы явления

можно посчитать площади явлений, площади перекрытия на последовательных кадрах можно строить климатологию

трудно обучать для тонких, вытянутых структур подбор функции потерь — искусство, сложно автоматизируется

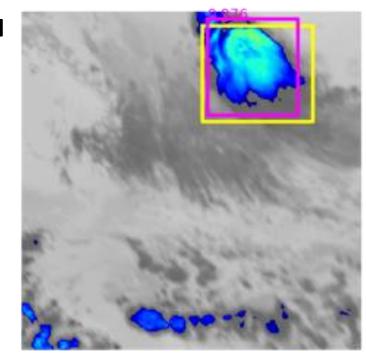
очень трудозатратная разметка





Обнаружение визуальных объектов (VOD)

- Цель: определить положение и размеры объектов, оценить вероятность быть явлением (x, y, w, h, p)
- порождается заранее избыточное количество меток; для каждой решается задача регрессии для (x, y, w, h) и классификации



- Архитектуры нейросетей:
 - RetinaNet, семейство YOLO, SSD, Faster R-CNN
- Функции потерь:
 - cross-entropy, focal loss | Smooth L1, IoU-based loss

Обнаружение визуальных объектов (VOD)

нет точных границ явлений

bbox не вполне отражает структуру явления – это компромисс

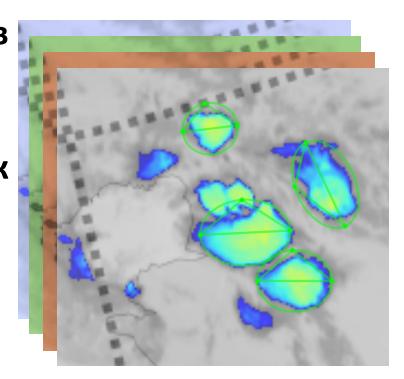
разметка интуитивная, быстрая, эргономичная результаты можно использовать для анализа условий возникновения / эволюции можно строить климатологию

подходит для построения траекторий



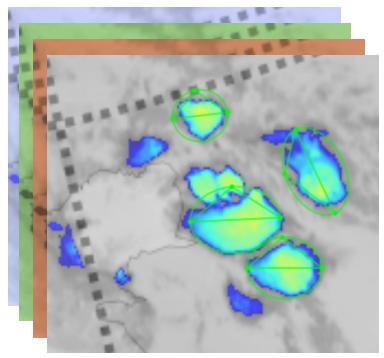
Другие постановки задачи

- Сегментация различимых экземпляров (Instance segmentation): Mask R-CNN, YOLACT, etc.
- **Регрессия положения ключевых точек** (точек оси, точек графа скелета, *etc.*)
- Обнаружение аномалий (патчей): VAE, xGAN, etc.
- Выучивание и кластеризация эмбеддингов патчей (self-supervised learning): MoCo, SimCLR, etc.



Особенности ГО в задачах обнаружения

- Supervised- постановки требуют большого количества размеченных данных
 - разметку проводит эксперт, экспертов мало
 - разметка трудозатратна, данные новое золото
- для Supervised- постановок: сильный дисбаланс классов фон/явления — существенная проблема

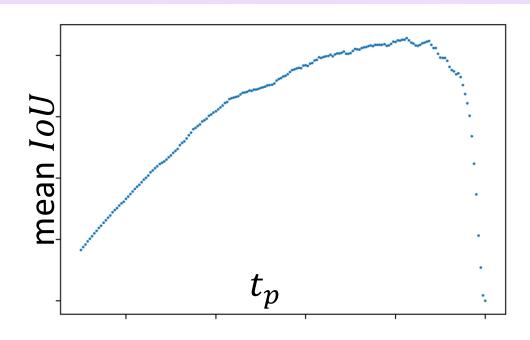


Оценка качества обнаружения явлений

• Метрики обнаружения:

Precision, Recall, F1-score, mAP, FAR (false alarm ratio), TPR (true positive rate), IoU

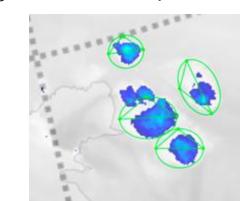
- Метрики чувствительны
 - к выбору порогового значения по $oldsymbol{p}$
 - к виду явлений
 - к сезону...



Нейросеть не обнаруживает явления точно, не дает «истинный ответ»
Результаты следует обрабатывать статистически, строить выводы на большом количестве примеров с учетом уровня ошибок

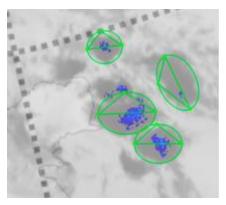
ПРИМЕР: MCS в данных METEOSAT

 $ch9 (10.8 \ \mu m) - T_{top}$

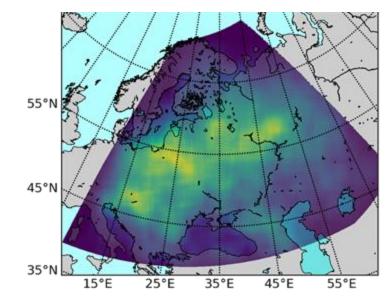


ch5 (6.25 μm) - WV

ch5 - ch9



- **Мезомасштабные конвективные системы (МКС)** крупные области организованной конвекции размером сотни километров и продолжительностью до суток
- В данных *Meteosat* проявляются как обширные **холодные облачные вершины** и характерные структуры.
- По своим пространственным и радиационным признакам хорошо поддаются автоматическому обнаружению методами глубокого обучения.



Pasmetka: GeoAnnotateAssisted

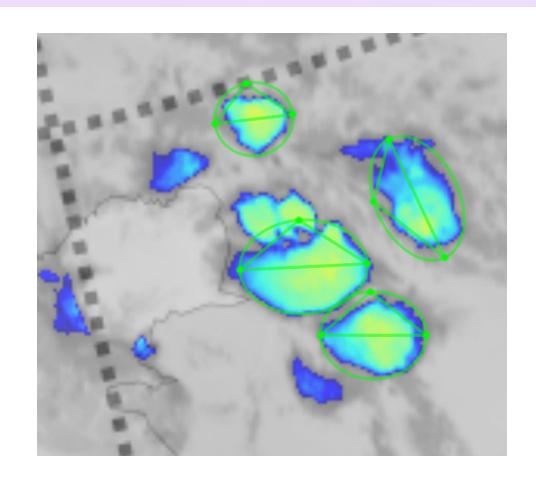
- Преобразование и подготовка визуализации и данных на серверной стороне
- Разметка эллипсами осесимметричных MCS и ведение треков в базе данных
- Интеграция экспертной разметки и (опционально) нейросетевых подсказок (предварительно обученной нейросети)

Разметка: база данных DaMesCoS-ETR

- DaMesCoS-ETR Dataset of Mesoscale Convective Systems over the European Territory of Russia
- 205 треков, 2800 меток MCS, размеченных экспертами на снимках Meteosat
- Охват: 2012-2020 (летние месяцы)
- Различные типы MCS (MCC, суперячейки, кластеры)

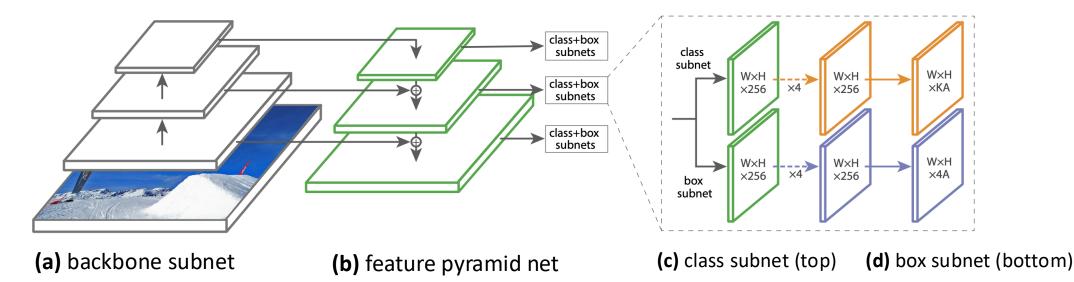
Подготовка данных для нейросети

- Нормирование каналов ch5 и ch9 -> [0, 1] с инверсией шкалы (холодные облака становятся «яркими»)
- Нелинейное преобразование BTD для подчёркивания диапазона, важного для конвекции (порождение признака...)
- Формирование псевдо-RGB представления, приближённого к распределениям ImageNet
- Аугментации данных: аффинные преобразования, шум, диффеоморфные преобразования «на лету» на GPU



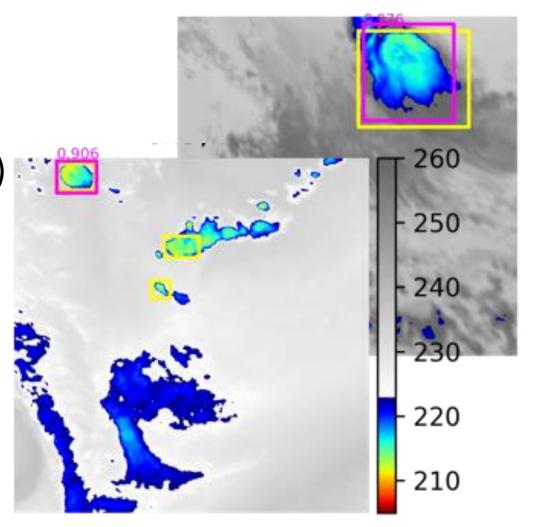
Модель: RetinaNet + ResNet

- Архитектура: RetinaNet как одностадийный детектор объектов
- Backbone: ResNet-152, предобученный на ImageNet
 - (transfer learning + fine tuning)
- Focal loss для задач классификации боксов и борьбы с дисбалансом классов фон/объект
- Регрессия координат: Smooth L1 / IoU-based loss для уточнения расположения, размеров MCS



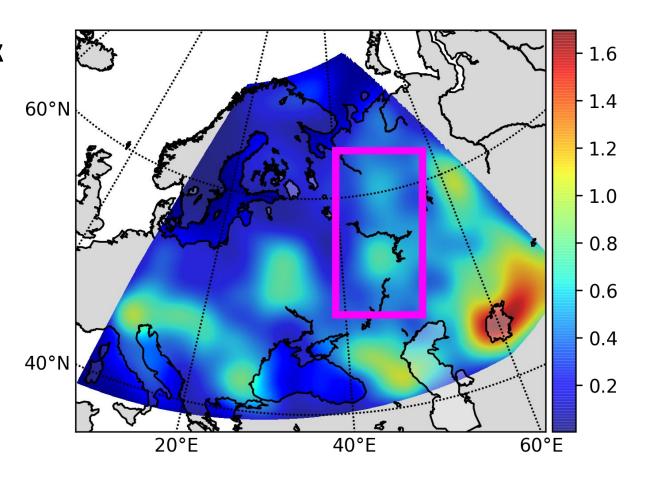
ПРИМЕР: MCS в данных METEOSAT

- mAP \approx 0.75, F1-score \approx 0.7
- Recall / TPR порядка 0.6-0.7
- FAR порядка 0.3–0.4 (зависит от порога) 📑👅
- Малый разрыв между ф-й потерь на тренировочной и валидационной выборках



Плотность MCS на ETP

- Нейросетевой детектор применен к многолетнему архиву снимков Meteosat
- Оценена частота обнаружения MCS (попиксельно)



Заключение

- Глубокое обучение естественным образом подходит для анализа спутниковых данных с сложными пространственными паттернами
- Формулировка задачи (segmentation / VOD / др.) критически влияет на требования к данным и результат
- Для осесимметричных MCS постановка в виде VOD с RetinaNet и эллиптическими метками практичный компромисс
- Оценка ошибок обязательна для интерпретации

Перспективы

- Переход от осесимметричных к квазилинейным MCS и более сложным геометриям объектов
- Использование self-supervised обучения/предобучения для снижения зависимости от разметки
- Интеграция дополнительных данных (реанализа) в состав признаков

Спасибо!

krinitsky.ma@phystech.edu

https://t.me/mkrinitskiy

